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Chapter 3:  Vector Analysis 
 
 
Lesson #14 
Chapter — Section:  3-1 
Topics:  Basic laws of vector algebra 
 
Highlights: 

• Vector magnitude, direction, unit vector 
• Position and distance vectors 
• Vector addition and multiplication 

- Dot product 
- Vector product 
- Triple product 

 
Special Illustrations: 

• CD-ROM Module 3.2 
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Lessons #15 and 16 
Chapter — Section:  3-2 
Topics:  Coordinate systems  
 
Highlights: 

• Commonly used coordinate systems:  Cartesian, cylindrical, spherical 
• Choice is based on which one best suits problem geometry 
• Differential surface vectors and differential volumes 

 
Special Illustrations: 

• Examples 3-3 to 3-5 
• Technology Brief on “GPS” (CD-ROM) 
 
 

Global Positioning System  

The Global Positioning System (GPS), 
initially developed in the 1980s by the U.S. 
Department of Defense as a navigation tool for 
military use, has evolved into a system with 
numerous civilian applications including vehicle 
tracking, aircraft navigation, map displays in 
automobiles, and topographic mapping. The 
overall GPS is composed of 3 segments. The 
space segment consists of 24 satellites (A), each 
circling Earth every 12 hours at an orbital 
altitude of about 12,000 miles and transmitting 
continuous coded time signals. The user segment 
consists of hand-held or vehicle-mounted 
receivers that determine their own locations by 
receiving and processing multiple satellite 
signals.  The third segment is a network of five 
ground stations, distributed around the world, 
that monitor the satellites and provide them with 
updates on their precise orbital information.  
GPS provides a location inaccuracy of about 30 
m, both horizontally and vertically, but it 
can be improved to within 1 m by 
differential GPS (see illustration).  
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Lesson #17 
Chapter — Section:  3-3 
Topics:  Coordinate transformations 
 
Highlights: 

• Basic logic for decomposing a vector in one coordinate system into the coordinate 
variables of another system 

• Transformation relations (Table 3-2) 
 
Special Illustrations: 

• Example 3-8 
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Lesson #18 
Chapter — Section:  3-4 
Topics:  Gradient operator 
  
Highlights: 

• Derivation of ∇ T in Cartesian coordinates 
• Directional derivative 
• ∇ T  in cylindrical and spherical coordinates 

 
Special Illustrations: 

• Example 3-10(b) 
• CD-ROM Modules 3.5 or 3.6 
• CD-ROM Demos 3.1-3.9 (any 2) 
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Lesson #19 
Chapter — Section:  3-5 
Topics:  Divergence operator 
  
Highlights: 

• Concept of “flux” 
• Derivation of ∇ .E 
• Divergence theorem 

 
Special Illustrations: 

• CD-ROM Modules 3.7-3.11 (any 2) 
• CD-ROM Demos 3.10-3.15 (any 1 or 2) 
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Lesson #20 
Chapter — Section:  3-6 
Topics:  Curl operator 
  
Highlights: 

• Concept of “circulation” 
• Derivation of ∇ x B 
• Stokes’s theorem 

 
Special Illustrations: 

• Example 3-12 
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Lesson #21 
Chapter — Section:  3-7 
Topics:  Laplacian operator 
  
Highlights: 

• Definition of 2∇ V 
• Definition of 2∇ E 

 
Special Illustrations: 

• Technology Brief on “X-Ray Computed Tomography” 
 
 
X-Ray Computed Tomography  

Tomography is derived from the Greek words 
tome, meaning section or slice, and graphia, 
meaning writing.  Computed tomography, also 
known as CT scan or CAT scan (for computed 
axial tomography), refers to a technique 
capable of generating 3-D images of the x-ray 
attenuation (absorption) properties of an 
object.  This is in contrast with the traditional 
x-ray technique which produces only a 2-D 
profile of the object.  CT was invented in 1972 
by British electrical engineer Godfrey 
Hounsfield, and independently by Allan 
Cormack, a South African-born American 
physicist. The two inventors shared the 1979 
Nobel Prize for Physiology or Medicine. 
Among diagnostic imaging techniques, CT has 
the decided advantage in having the sensitivity 
to image body parts on a wide range of 
densities, from soft tissue to blood vessels and 
bones.  
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Chapter 3

Section 3-1: Vector Algebra

Problem 3.1 Vector A starts at point
�
1 � � 1 � � 3 � and ends at point

�
2 � � 1 � 0 � . Find

a unit vector in the direction of A.

Solution:

A � x̂
�
2 � 1 � 	 ŷ

� � 1 � � � 1 � � 	 ẑ
�
0 � � � 3 � ��� x̂ 	 ẑ3 �

�A � � � 1 	 9 � 3  16 �
â � A
�A � � x̂ 	 ẑ3

3  16
� x̂0  32 	 ẑ0  95 

Problem 3.2 Given vectors A � x̂2 � ŷ3 	 ẑ, B � x̂2 � ŷ 	 ẑ3, and C � x̂4 	 ŷ2 � ẑ2,
show that C is perpendicular to both A and B.

Solution:

A � C � �
x̂2 � ŷ3 	 ẑ � � � x̂4 	 ŷ2 � ẑ2 ��� 8 � 6 � 2 � 0 �

B � C � �
x̂2 � ŷ 	 ẑ3 � � � x̂4 	 ŷ2 � ẑ2 ��� 8 � 2 � 6 � 0 

Problem 3.3 In Cartesian coordinates, the three corners of a triangle are P1
�
0 � 4 � 4 � ,

P2
�
4 � � 4 � 4 � , and P3

�
2 � 2 � � 4 � . Find the area of the triangle.

Solution: Let B � � �

P1P2 � x̂4 � ŷ8 and C � � �

P1P3 � x̂2 � ŷ2 � ẑ8 represent two sides of
the triangle. Since the magnitude of the cross product is the area of the parallelogram
(see the definition of cross product in Section 3-1.4), half of this is the area of the
triangle:

A � 1
2 �B � C � � 1

2 �
�
x̂4 � ŷ8 ��� �

x̂2 � ŷ2 � ẑ8 � �� 1
2 � x̂

� � 8 � � � 8 � 	 ŷ
� � � 4 � � � 8 ��� 	 ẑ

�
4
� � 2 � � � � 8 � 2 � �� 1

2 � x̂64 	 ŷ32 	 ẑ8 � � 1
2
� 642 	 322 	 82 � 1

2
� 5184 � 36 �

where the cross product is evaluated with Eq. (3.27).

Problem 3.4 Given A � x̂2 � ŷ3 	 ẑ1 and B � x̂Bx 	 ŷ2 	 ẑBz:
(a) find Bx and Bz if A is parallel to B;
(b) find a relation between Bx and Bz if A is perpendicular to B.
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Solution:
(a) If A is parallel to B, then their directions are equal or opposite: âA � � âB, or

A � �A � � � B � �B � �
x̂2 � ŷ3 	 ẑ� 14

� � x̂Bx 	 ŷ2 	 ẑBz� 4 	 B2
x 	 B2

z


From the y-component,

� 3� 14
� � 2

� 4 	 B2
x 	 B2

z

which can only be solved for the minus sign (which means that A and B must point
in opposite directions for them to be parallel). Solving for B2

x 	 B2
z ,

B2
x 	 B2

z � � � 2

� 3
� 14 
 2 � 4 � 20

9


From the x-component,

2� 14
� � Bx� 56 � 9 � Bx � � 2 � 56

3 � 14
� � 4

3

and, from the z-component,

Bz � � 2
3


This is consistent with our result for B2

x 	 B2
z .

These results could also have been obtained by assuming θAB was 0 � or 180 � and
solving �A � �B � � � A � B, or by solving A � B � 0.

(b) If A is perpendicular to B, then their dot product is zero (see Section 3-1.4).
Using Eq. (3.17),

0 � A � B � 2Bx � 6 	 Bz �
or

Bz � 6 � 2Bx 
There are an infinite number of vectors which could be B and be perpendicular to A,
but their x- and z-components must satisfy this relation.

This result could have also been obtained by assuming θAB � 90 � and calculating
�A � �B � � �A � B � .

Problem 3.5 Given vectors A � x̂ 	 ŷ2 � ẑ3, B � x̂2 � ŷ4, and C � ŷ2 � ẑ4, find
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(a) A and â,
(b) the component of B along C,
(c) θAC,
(d) A � � � C,
(e) A �

�
B � � � C � ,

(f) A � � � �
B � � � C � ,

(g) x̂ � � � B, and
(h)

�
A � � � ŷ ��� ẑ.

Solution:
(a) From Eq. (3.4),

A � � 12 	 22 	 � � 3 � 2 � � 14 �
and, from Eq. (3.5),

âA � x̂ 	 ŷ2 � ẑ3� 14


(b) The component of B along C (see Section 3-1.4) is given by

BcosθBC � B � C
C

� � 8� 20
� � 1  8 

(c) From Eq. (3.21),

θAC � cos � 1 A � C
AC

� cos � 1 4 	 12� 14 � 20
� cos � 1 16� 280

� 17  0 � 
(d) From Eq. (3.27),

A � C � x̂
�
2
� � 4 � � � � 3 � 2 � 	 ŷ

� � � 3 � 0 � 1
� � 4 � � 	 ẑ

�
1
�
2 � � 2

�
0 � ��� � x̂2 	 ŷ4 	 ẑ2 

(e) From Eq. (3.27) and Eq. (3.17),

A � � B � C � � A � � x̂16 	 ŷ8 	 ẑ4 ��� 1
�
16 � 	 2

�
8 � 	 � � 3 � 4 � 20 

Eq. (3.30) could also have been used in the solution. Also, Eq. (3.29) could be used
in conjunction with the result of part (d).

(f) By repeated application of Eq. (3.27),

A � �
B � C � � A � �

x̂16 	 ŷ8 	 ẑ4 ��� x̂32 � ŷ52 � ẑ24 
Eq. (3.33) could also have been used.
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(g) From Eq. (3.27),

x̂ � B � � ẑ4 
(h) From Eq. (3.27) and Eq. (3.17),�

A � ŷ � � ẑ � �
x̂3 	 ẑ � � ẑ � 1 

Eq. (3.29) and Eq. (3.25) could also have been used in the solution.

Problem 3.6 Given vectors A � x̂2 � ŷ 	 ẑ3 and B � x̂3 � ẑ2, find a vector C whose
magnitude is 9 and whose direction is perpendicular to both A and B.

Solution: The cross product of two vectors produces a new vector which is
perpendicular to both of the original vectors. Two vectors exist which have a
magnitude of 9 and are orthogonal to both A and B: one which is 9 units long in
the direction of the unit vector parallel to A � B, and one in the opposite direction.

C � � 9
A � B
�A � B � � � 9

�
x̂2 � ŷ 	 ẑ3 ��� �

x̂3 � ẑ2 �
� � x̂2 � ŷ 	 ẑ3 ��� �

x̂3 � ẑ2 � �� � 9
x̂2 	 ŷ13 	 ẑ3� 22 	 132 	 32

� � � x̂1  34 	 ŷ8  67 	 ẑ2  0 � 
Problem 3.7 Given A � x̂

�
x 	 2y � � ŷ

�
y 	 3z � 	 ẑ

�
3x � y � , determine a unit vector

parallel to A at point P
�
1 � � 1 � 2 � .

Solution: The unit vector parallel to A � x̂
�
x 	 2y � � ŷ

�
y 	 3z � 	 ẑ

�
3x � y � at the

point P
�
1 � � 1 � 2 � is

A
�
1 � � 1 � 2 �

�A �
1 � � 1 � 2 � � � � x̂ � ŷ5 	 ẑ4

� � � 1 � 2 	 � � 5 � 2 	 42
� � x̂ � ŷ5 	 ẑ4� 42

� � x̂0  15 � ŷ0  77 	 ẑ0  62 
Problem 3.8 By expansion in Cartesian coordinates, prove:

(a) the relation for the scalar triple product given by (3.29), and
(b) the relation for the vector triple product given by (3.33).

Solution:
(a) Proof of the scalar triple product given by Eq. (3.29): From Eq. (3.27),

A � B � x̂
�
AyBz � AzBy � 	 ŷ

�
AzBx � AxBz � 	 ẑ

�
AxBy � AyBx � �



118 CHAPTER 3

B � C � x̂
�
ByCz � BzCy � 	 ŷ

�
BzCx � BxCz � 	 ẑ

�
BxCy � ByCx � �

C � A � x̂
�
CyAz � CzAy � 	 ŷ

�
CzAx � CxAz � 	 ẑ

�
CxAy � CyAx � 

Employing Eq. (3.17), it is easily shown that

A � � B � C � � Ax
�
ByCz � BzCy � 	 Ay

�
BzCx � BxCz � 	 Az

�
BxCy � ByCx � �

B � � C � A � � Bx
�
CyAz � CzAy � 	 By

�
CzAx � CxAz � 	 Bz

�
CxAy � CyAx � �

C � � A � B � � Cx
�
AyBz � AzBy � 	 Cy

�
AzBx � AxBz � 	 Cz

�
AxBy � AyBx � �

which are all the same.
(b) Proof of the vector triple product given by Eq. (3.33): The evaluation of the left

hand side employs the expression above for B � C with Eq. (3.27):

A � �
B � C � � A � �

x̂
�
ByCz � BzCy � 	 ŷ

�
BzCx � BxCz � 	 ẑ

�
BxCy � ByCx � �� x̂

�
Ay
�
BxCy � ByCx � � Az

�
BzCx � BxCz � �

	 ŷ
�
Az
�
ByCz � BzCy � � Ax

�
BxCy � ByCx ���

	 ẑ
�
Ax
�
BzCx � BxCz � � Ay

�
ByCz � BzCy � � �

while the right hand side, evaluated with the aid of Eq. (3.17), is

B
�
A � C � � C

�
A � B � � B

�
AxCx 	 AyCy 	 AzCz � � C

�
AxBx 	 AyBy 	 AzBz �� x̂

�
Bx
�
AyCy 	 AzCz � � Cx

�
AyBy 	 AzBz � �

	 ŷ
�
By
�
AxCx 	 AzCz � � Cy

�
AxBx 	 AzBz � �

	 ẑ
�
Bz
�
AxCx 	 AyCy � � Cz

�
AxBx 	 AyBy � � 

By rearranging the expressions for the components, the left hand side is equal to the
right hand side.

Problem 3.9 Find an expression for the unit vector directed toward the origin from
an arbitrary point on the line described by x � 1 and z � 2.

Solution: An arbitrary point on the given line is
�
1 � y � 2 � . The vector from this point

to
�
0 � 0 � 0 � is:

A � x̂
�
0 � 1 � 	 ŷ

�
0 � y � 	 ẑ

�
0 � 2 ��� � x̂ � ŷy � 2ẑ �

�A � � � 1 	 y2 	 4 � � 5 	 y2 �
â � A
�A � � � x̂ � ŷy � ẑ2

� 5 	 y2
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Problem 3.10 Find an expression for the unit vector directed toward the point P
located on the z-axis at a height h above the x–y plane from an arbitrary point
Q
�
x � y � � 3 � in the plane z � � 3.

Solution: Point P is at
�
0 � 0 � h � . Vector A from Q

�
x � y � � 3 � to P

�
0 � 0 � h � is:

A � x̂
�
0 � x � 	 ŷ

�
0 � y � 	 ẑ

�
h 	 3 ��� � x̂x � ŷy 	 ẑ

�
h 	 3 � �

�A � � � x2 	 y2 	 �
h 	 3 � 2 � 1 � 2 �

â � A
�A � � � x̂x � ŷy 	 ẑ

�
h 	 3 �

� x2 	 y2 	 �
h 	 3 � 2 � 1 � 2 

Problem 3.11 Find a unit vector parallel to either direction of the line described by

2x 	 z � 4 
Solution: First, we find any two points on the given line. Since the line equation
is not a function of y, the given line is in a plane parallel to the x–z plane. For
convenience, we choose the x–z plane with y � 0.

For x � 0, z � 4. Hence, point P is at
�
0 � 0 � 4 � .

For z � 0, x � 2. Hence, point Q is at
�
2 � 0 � 0 � .

Vector A from P to Q is:

A � x̂
�
2 � 0 � 	 ŷ

�
0 � 0 � 	 ẑ

�
0 � 4 ��� x̂2 � ẑ4 �

â � A
�A � � x̂2 � ẑ4� 20


Problem 3.12 Two lines in the x–y plane are described by the expressions:

Line 1 x 	 2y � � 6 �
Line 2 3x 	 4y � 8 

Use vector algebra to find the smaller angle between the lines at their intersection
point.

Solution: Intersection point is found by solving the two equations simultaneously:

� 2x � 4y � 12 �
3x 	 4y � 8 
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10 20 302515 35-10-15-20-25-30-35

-10
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(0, 2)

(0, -3)

(20, -13)

B
A

θAB

Figure P3.12: Lines 1 and 2.

The sum gives x � 20, which, when used in the first equation, gives y � � 13.
Hence, intersection point is

�
20 � � 13 � .

Another point on line 1 is x � 0, y � � 3. Vector A from
�
0 � � 3 � to

�
20 � � 13 � is

A � x̂
�
20 � 	 ŷ

� � 13 	 3 ��� x̂20 � ŷ10 �
�A � � � 202 	 102 � � 500 

A point on line 2 is x � 0, y � 2. Vector B from
�
0 � 2 � to

�
20 � � 13 � is

B � x̂
�
20 � 	 ŷ

� � 13 � 2 ��� x̂20 � ŷ15 �
�B � � � 202 	 152 � � 625 

Angle between A and B is

θAB � cos � 1

�
A � B
�A � �B � 
 � cos � 1

�
400 	 150� 500 � � 625


 � 10  3 � 
Problem 3.13 A given line is described by

x 	 2y � 4 
Vector A starts at the origin and ends at point P on the line such that A is orthogonal
to the line. Find an expression for A.
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Solution: We first plot the given line. Next we find vector B which connects point
P1
�
0 � 2 � to P2

�
4 � 0 � , both of which are on the line:

B � x̂
�
4 � 0 � 	 ŷ

�
0 � 2 ��� x̂4 � ŷ2 

Vector A starts at the origin and ends on the line at P. If the x-coordinate of P is x,

x

y

A B

P (0,2)1

P (4,0)2

(0,0)

Figure P3.13: Given line and vector A.

then its y-coordinate has to be
�
4 � x � � 2 in order to be on the line. Hence P is at�

x � � 4 � x � � 2 � . Vector A is

A � x̂x 	 ŷ

�
4 � x

2 
 
But A is perpendicular to the line. Hence,

A � B � 0 ��
x̂x 	 ŷ

�
4 � x

2 
 � � � x̂4 � ŷ2 ��� 0 �
4x � �

4 � x ��� 0 � or

x � 4
5
� 0  8 

Hence,

A � x̂0  8 	 ŷ

�
4 � 0  8

2 
 � x̂0  8 	 ŷ1  6 
Problem 3.14 Show that, given two vectors A and B,
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(a) the vector C defined as the vector component of B in the direction of A is given
by

C � â
�
B � â ��� A

�
B � A �
�A � 2 �

where â is the unit vector of A, and

(b) the vector D defined as the vector component of B perpendicular to A is given
by

D � B � A
�
B � A �
�A � 2 

Solution:
(a) By definition, B � â is the component of B along â. The vector component of�

B � â � along A is

C � â
�
B � â ��� A

�A �
�

B �

A
�A � 
 � A

�
B � A �
�A � 2 

(b) The figure shows vectors A, B, and C, where C is the projection of B along A.
It is clear from the triangle that

B � C 	 D �
or

D � B � C � B � A
�
B � A �
�A � 2 

A

C

D

B

Figure P3.14: Relationships between vectors A, B, C, and D.
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Problem 3.15 A certain plane is described by

2x 	 3y 	 4z � 16 
Find the unit vector normal to the surface in the direction away from the origin.

Solution: Procedure:

1. Use the equation for the given plane to find three points, P1, P2 and P3 on the
plane.

2. Find vector A from P1 to P2 and vector B from P1 to P3.

3. Cross product of A and B gives a vector C orthogonal to A and B, and hence
to the plane.

4. Check direction of ĉ.

Steps:

1. Choose the following three points:

P1 at
�
0 � 0 � 4 � �

P2 at
�
8 � 0 � 0 � �

P3 at
�
0 � 16

3 � 0 � 
2. Vector A from P1 to P2

A � x̂
�
8 � 0 � 	 ŷ

�
0 � 0 � 	 ẑ

�
0 � 4 ��� x̂8 � ẑ4

Vector B from P1 to P3

B � x̂
�
0 � 0 � 	 ŷ

�
16
3 � 0 
 	 ẑ

�
0 � 4 ��� ŷ

16
3 � ẑ4

3.

C � A � � � B� x̂
�
AyBz � AzBy � 	 ŷ

�
AzBx � AxBz � 	 ẑ

�
AxBy � AyBx �� x̂

�
0 � � � 4 � � � � 4 � � 16

3 
 	 ŷ
� � � 4 � � 0 � 8 � � � 4 � � 	 ẑ

�
8 � 16

3 � 0 � 0 

� x̂

64
3 	 ŷ32 	 ẑ

128
3
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Verify that C is orthogonal to A and B

A � C � �
8 � 64

3 
 	 �
32 � 0 � 	

�
128

3
� � � 4 � 
 � 512

3 � 512
3

� 0

B � C � �
0 � 64

3 
 	
�

32 � 16
3 
 	

�
128
3
� � � 4 � 
 � 512

3 � 512
3

� 0

4. C � x̂ 64
3 	 ŷ32 	 ẑ 128

3

ĉ � C
�C � � x̂ 64

3 	 ŷ32 	 ẑ 128
3

� � 64
3 � 2 	 322 	 � 128

3 � 2
� x̂0  37 	 ŷ0  56 	 ẑ0  74 

ĉ points away from the origin as desired.

Problem 3.16 Given B � x̂
�
z � 3y � 	 ŷ

�
2x � 3z � � ẑ

�
x 	 y � , find a unit vector parallel

to B at point P
�
1 � 0 � � 1 � .

Solution: At P
�
1 � 0 � � 1 � ,

B � x̂
� � 1 � 	 ŷ

�
2 	 3 � � ẑ

�
1 ��� � x̂ 	 ŷ5 � ẑ �

b̂ � B
�B � � � x̂ 	 ŷ5 � ẑ� 1 	 25 	 1

� � x̂ 	 ŷ5 � ẑ� 27


Problem 3.17 When sketching or demonstrating the spatial variation of a vector
field, we often use arrows, as in Fig. 3-25 (P3.17), wherein the length of the arrow
is made to be proportional to the strength of the field and the direction of the arrow
is the same as that of the field’s. The sketch shown in Fig. P3.17, which represents
the vector field E � r̂r, consists of arrows pointing radially away from the origin and
their lengths increase linearly in proportion to their distance away from the origin.
Using this arrow representation, sketch each of the following vector fields:

(a) E1 � � x̂y,

(b) E2 � ŷx,

(c) E3 � x̂x 	 ŷy,

(d) E4 � x̂x 	 ŷ2y,

(e) E5 � φ̂φφr,

(f) E6 � r̂sinφ.
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x

y

EE

EE

Figure P3.17: Arrow representation for vector field E � r̂r (Problem 3.17).

Solution:
(a)

x

y

x̂E1P2.13a: = - y

E E

EE
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(b)

x

y

E

E

E

E

P3.17b: E2 � ŷx
(c)

x

y

E

EE

E

E

x̂E3P2.13c: = x + ŷy
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(d)

x

y

x̂E4P2.13d: = x + ŷ2y

E

E

E

E

(e)

x

y

φ̂E5P2.13e: = r

E

E
E

E
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(f)

x

y

r̂E6P2.13f: = sinφ

E

E

E E

Problem 3.18 Use arrows to sketch each of the following vector fields:

(a) E1 � x̂x � ŷy,

(b) E2 � � φ̂φφ,

(c) E3 � ŷ 1
x ,

(d) E4 � r̂cosφ.

Solution:
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(a)

x

y

x̂E1P2.14a: = x - ŷy

E
E

E
E

(b)

x

y

φ̂E2P2.14b: = - 

E

E
E

E



130 CHAPTER 3

(c)

x

y

Indicates |E| is infinite

E3P2.14c: = ŷ (1/x)

E

E

(d)

x

y

r̂E4P2.14d: = cosφ

E

E

E

EE

E

E

E

E
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Sections 3-2 and 3-3: Coordinate Systems

Problem 3.19 Convert the coordinates of the following points from Cartesian to
cylindrical and spherical coordinates:

(a) P1
�
1 � 2 � 0 � ,

(b) P2
�
0 � 0 � 2 � ,

(c) P3
�
1 � 1 � 3 � ,

(d) P4
� � 2 � 2 � � 2 � .

Solution: Use the “coordinate variables” column in Table 3-2.
(a) In the cylindrical coordinate system,

P1 � � � 12 	 22 � tan � 1 � 2 � 1 � � 0 ��� � � 5 � 1  107 rad � 0 ��� �
2  24 � 63  4 � � 0 � 

In the spherical coordinate system,

P1 � � � 12 	 22 	 02 � tan � 1 � � 12 	 22 � 0 � � tan � 1 � 2 � 1 � �� � � 5 � π � 2 rad � 1  107 rad � � �
2  24 � 90  0 � � 63  4 � � 

Note that in both the cylindrical and spherical coordinates, φ is in Quadrant I.
(b) In the cylindrical coordinate system,

P2 � � � 02 	 02 � tan � 1 � 0 � 0 � � 2 � � �
0 � 0 rad � 2 ��� �

0 � 0 � � 2 � 
In the spherical coordinate system,

P2 � � � 02 	 02 	 22 � tan � 1 � � 02 	 02 � 2 � � tan � 1 � 0 � 0 � �� �
2 � 0 rad � 0 rad ��� �

2 � 0 � � 0 � � 
Note that in both the cylindrical and spherical coordinates, φ is arbitrary and may
take any value.

(c) In the cylindrical coordinate system,

P3 � � � 12 	 12 � tan � 1 � 1 � 1 � � 3 ��� � � 2 � π � 4 rad � 3 � � �
1  41 � 45  0 � � 3 � 

In the spherical coordinate system,

P3 � � � 12 	 12 	 32 � tan � 1 � � 12 	 12 � 3 � � tan � 1 � 1 � 1 � �� � � 11 � 0  44 rad � π � 4 rad � � �
3  32 � 25  2 � � 45  0 � � 

Note that in both the cylindrical and spherical coordinates, φ is in Quadrant I.
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(d) In the cylindrical coordinate system,

P4 � � � � � 2 � 2 	 22 � tan � 1 � 2 � � 2 � � � 2 �� �
2 � 2 � 3π � 4 rad � � 2 ��� �

2  83 � 135  0 � � � 2 � 
In the spherical coordinate system,

P4 � � � � � 2 � 2 	 22 	 � � 2 � 2 � tan � 1 � � � � 2 � 2 	 22 � � 2 � � tan � 1 � 2 � � 2 � �� �
2 � 3 � 2  187 rad � 3π � 4 rad � � �

3  46 � 125  3 � � 135  0 � � 
Note that in both the cylindrical and spherical coordinates, φ is in Quadrant II.

Problem 3.20 Convert the coordinates of the following points from cylindrical to
Cartesian coordinates:

(a) P1
�
2 � π � 4 � � 2 � ,

(b) P2
�
3 � 0 � � 2 � ,

(c) P3
�
4 � π � 3 � .

Solution:
(a)

P1
�
x � y � z � � P1

�
r cos φ � r sin φ � z ��� P1 � 2cos

π
4
� 2sin

π
4
� � 2 � � P1

�
1  41 � 1  41 � � 2 � 

(b) P2
�
x � y � z ��� P2

�
3cos 0 � 3sin 0 � � 2 ��� P2

�
3 � 0 � � 2 � .

(c) P3
�
x � y � z ��� P3

�
4cos π � 4sin π � 3 ��� P3

� � 4 � 0 � 3 � .
Problem 3.21 Convert the coordinates of the following points from spherical to
cylindrical coordinates:

(a) P1
�
5 � 0 � 0 � ,

(b) P2
�
5 � 0 � π � ,

(c) P3
�
3 � π � 2 � 0 � .

Solution:
(a)

P1
�
r� φ � z ��� P1

�
Rsinθ � φ � Rcos θ ��� P1

�
5sin 0 � 0 � 5cos 0 �� P1
�
0 � 0 � 5 � 

(b) P2
�
r� φ � z ��� P2

�
5sin 0 � π � 5cos 0 ��� P2

�
0 � π � 5 � .
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(c) P3
�
r� φ � z ��� P3

�
3sin π

2 � 0 � 3cos π
2 ��� P3

�
3 � 0 � 0 � .

Problem 3.22 Use the appropriate expression for the differential surface area ds to
determine the area of each of the following surfaces:

(a) r � 3; 0
� φ � π � 3; � 2

�
z

�
2,

(b) 2
�

r
�

5; π � 2 � φ � π; z � 0,
(c) 2

�
r

�
5; φ � π � 4; � 2

�
z

�
2,

(d) R � 2; 0
� θ � π � 3; 0

� φ � π,
(e) 0

�
R

�
5; θ � π � 3; 0

� φ �
2π.

Also sketch the outlines of each of the surfaces.

Solution:

3 2

∆Φ = π/3

25

y

x

2
5

(a) (b)

(d) (e)

(c)

Figure P3.22: Surfaces described by Problem 3.22.

(a) Using Eq. (3.43a),

A � � 2

z � � 2

� π � 3
φ � 0

�
r � � r � 3 dφ dz � � � 3φz � � π � 3φ � 0 � ���

2

z � � 2
� 4π 
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(b) Using Eq. (3.43c),

A � � 5

r � 2

� π

φ � π � 2 � r � � z � 0 dφ dr � � � 1
2 r2φ � ��

5
r � 2 � ���

π

φ � π � 2 � 21π
4


(c) Using Eq. (3.43b),

A � � 2

z � � 2

� 5

r � 2

�
1 � � φ � π � 4 dr dz � � � rz � � 2z � � 2 � ���

5

r � 2
� 12 

(d) Using Eq. (3.50b),

A � � π � 3
θ � 0

� π

φ � 0
� R2 sinθ � ��

R � 2 dφ dθ � � � � 4φcos θ � � π � 3θ � 0 � ���
π

φ � 0
� 2π 

(e) Using Eq. (3.50c),

A � � 5

R � 0

� 2π

φ � 0

�
Rsinθ � � θ � π � 3 dφ dR � � � 1

2R2φsin
π
3
� ���

2π

φ � 0

 ����

5

R � 0
� 25 � 3π

2


Problem 3.23 Find the volumes described by
(a) 2

�
r

�
5; π � 2 � φ � π; 0

�
z

�
2,

(b) 0
�

R
�

5; 0
� θ � π � 3; 0

� φ �
2π.

Also sketch the outline of each volume.

Solution:

(a) (b)

z

y

x

z

y

x

2 5

5
2

Figure P3.23: Volumes described by Problem 3.23 .

(a) From Eq. (3.44),

V � � 2

z � 0

� π

φ � π � 2
� 5

r � 2
r dr dφ dz � � � � 1

2r2φz � ��
5
r � 2 � ���

π

φ � π � 2 
 ����

2

z � 0
� 21π

2
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(b) From Eq. (3.50e),

V � � 2π

φ � 0

� π � 3
θ � 0

� 5

R � 0
R2 sin θ dR dθ dφ

�
�� � �

� cosθ
R3

3
φ 
 ����

5

R � 0
� �����

π � 3
θ � 0

��
������

2π

φ � 0

� 125π
3



Problem 3.24 A section of a sphere is described by 0
�

R
�

2, 0
� θ �

90 � � and
30 � � φ �

90 � . Find:

(a) the surface area of the spherical section,

(b) the enclosed volume.
Also sketch the outline of the section.

Solution:

y

z

x

φ=30o

Figure P3.24: Outline of section.
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S � � π � 2
φ � π � 6

� π � 2
θ � 0

R2 sinθ dθ dφ � R � 2

� 4 � π
2 � π

6
� � � cosθ � π � 20

� � 4 � π
3
� 4π

3
(m2) �

V � � 2

R � 0

� π � 2
φ � π � 6

� π � 2
θ � 0

R2 sin θ dR dθ dφ

� R3

3 ����

2

0
� π

2 � π
6
� � � cosθ � π � 20 � � 8

3
π
3
� 8π

9
(m3) 

Problem 3.25 A vector field is given in cylindrical coordinates by

E � r̂r cos φ 	 φ̂φφr sinφ 	 ẑz2 
Point P

�
2 � π � 3 � is located on the surface of the cylinder described by r � 2. At point P,

find:

(a) the vector component of E perpendicular to the cylinder,

(b) the vector component of E tangential to the cylinder.

Solution:
(a) En � r̂

�
r̂ � E ��� r̂ � r̂ � � r̂r cosφ 	 φ̂φφr sin φ 	 ẑz2 ��� � r̂r cos φ.

At P
�
2 � π � 3 � , En � r̂2cos π � � r̂2.

(b) Et � E � En � φ̂φφr sinφ 	 ẑz2.
At P

�
2 � π � 3 � , Et � φ̂φφ2sin π 	 ẑ32 � ẑ9.

Problem 3.26 At a given point in space, vectors A and B are given in spherical
coordinates by

A � R̂4 	 θ̂θθ2 � φ̂φφ �
B � � R̂2 	 φ̂φφ3 

Find:

(a) the scalar component, or projection, of B in the direction of A,

(b) the vector component of B in the direction of A,

(c) the vector component of B perpendicular to A.

Solution:
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(a) Scalar component of B in direction of A:

C � B � â � B � A
�A � � � � R̂2 	 φ̂φφ3 � � � R̂4 	 θ̂θθ2 � φ̂φφ �� 16 	 4 	 1� � 8 � 3� 21

� � 11� 21
� � 2  4 

(b) Vector component of B in direction of A:

C � âC � A
C
�A � � �

R̂4 	 θ̂θθ2 � φ̂φφ � � � 2  4 �� 21� � � R̂2  09 	 θ̂θθ1  05 � φ̂φφ0  52 � 
(c) Vector component of B perpendicular to A:

D � B � C � � � R̂2 	 φ̂φφ3 � 	 �
R̂2  09 	 θ̂θθ1  05 � φ̂φφ0  52 �� R̂0  09 	 θ̂θθ1  05 	 φ̂φφ2  48 

Problem 3.27 Given vectors

A � r̂
�
cos φ 	 3z � � φ̂φφ

�
2r 	 4sin φ � 	 ẑ

�
r � 2z � �

B � � r̂sinφ 	 ẑcosφ �
find

(a) θAB at
�
2 � π � 2 � 0 � ,

(b) a unit vector perpendicular to both A and B at
�
2 � π � 3 � 1 � .

Solution: It doesn’t matter whether the vectors are evaluated before vector products
are calculated, or if the vector products are directly calculated and the general results
are evaluated at the specific point in question.

(a) At
�
2 � π � 2 � 0 � , A � � φ̂φφ8 	 ẑ2 and B � � r̂. From Eq. (3.21),

θAB � cos � 1

�
A � B
AB 
 � cos � 1

�
0

AB 
 � 90 � 
(b) At

�
2 � π � 3 � 1 � , A � r̂7

2 � φ̂φφ4
�
1 	 1

2 � 3 � and B � � r̂1
2 � 3 	 ẑ1

2 . Since A � B is
perpendicular to both A and B, a unit vector perpendicular to both A and B is given
by

� A � B
�A � B � � � r̂

� � 4
�
1 	 1

2 � 3 � � � 1
2 � � φ̂φφ

� 7
2 � � 1

2 � � ẑ
�
4
�
1 	 1

2 � 3 � � � 1
2 � 3 �

� �
2
�
1 	 1

2 � 3 � � 2 	 � 7
4 � 2 	 �

3 	 2 � 3 � 2
���

�
r̂0  487 	 φ̂φφ0  228 	 ẑ 0  843 � 
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Problem 3.28 Find the distance between the following pairs of points:

(a) P1
�
1 � 2 � 3 � and P2

� � 2 � � 3 � � 2 � in Cartesian coordinates,

(b) P3
�
1 � π � 4 � 3 � and P4

�
3 � π � 4 � 4 � in cylindrical coordinates,

(c) P5
�
4 � π � 2 � 0 � and P6

�
3 � π � 0 � in spherical coordinates.

Solution:
(a)

d � � � � 2 � 1 � 2 	 � � 3 � 2 � 2 	 � � 2 � 3 � 2 � 1 � 2 � � 9 	 25 	 25 � 1 � 2 � � 59 � 7  68 
(b)

d � � r2
2 	 r2

1 � 2r1r2 cos
�
φ2 � φ1 � 	 �

z2 � z1 � 2 � 1 � 2
� � 9 	 1 � 2 � 3 � 1 � cos � π

4 � π
4
� 	 �

4 � 3 � 2 � 1 � 2
� �

10 � 6 	 1 � 1 � 2 � 51 � 2 � 2  24 
(c)

d � � R2
2 	 R2

1 � 2R1R2 � cosθ2 cosθ1 	 sinθ1 sinθ2 cos
�
φ2 � φ1 ��� 
 1 � 2

� �
9 	 16 � 2 � 3 � 4 � cos πcos

π
2 	 sin

π
2

sinπcos
�
0 � 0 � ��� 1 � 2

� � 9 	 16 � 0 
 1 � 2 � � 25 � 5 
Problem 3.29 Determine the distance between the following pairs of points:

(a) P1
�
1 � 1 � 2 � and P2

�
0 � 2 � 3 � ,

(b) P3
�
2 � π � 3 � 1 � and P4

�
4 � π � 2 � 3 � ,

(c) P5
�
3 � π � π � 2 � and P6

�
4 � π � 2 � π � .

Solution:
(a) From Eq. (3.66),

d � � �
0 � 1 � 2 	 �

2 � 1 � 2 	 �
3 � 2 � 2 � � 3 

(b) From Eq. (3.67),

d � �
22 	 42 � 2

�
2 � � 4 � cos � π

2 � π
3
� 	 �

3 � 1 � 2 � � 24 � 8 � 3 � 3  18 
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(c) From Eq. (3.68),

d � �
32 	 42 � 2

�
3 � � 4 ��� cos

π
2

cos π 	 sinπsin
π
2

cos � π � π
2
� � � 5 

Problem 3.30 Transform the following vectors into cylindrical coordinates and
then evaluate them at the indicated points:

(a) A � x̂
�
x 	 y � at P1

�
1 � 2 � 3 � ,

(b) B � x̂
�
y � x � 	 ŷ

�
x � y � at P2

�
1 � 0 � 2 � ,

(c) C � x̂y2 � � x2 	 y2 � � ŷx2 � � x2 	 y2 � 	 ẑ4 at P3
�
1 � � 1 � 2 � ,

(d) D � R̂sinθ 	 θ̂θθcosθ 	 φ̂φφcos2 φ at P4
�
2 � π � 2 � π � 4 � ,

(e) E � R̂cosφ 	 θ̂θθsinφ 	 φ̂φφsin2 θ at P5
�
3 � π � 2 � π � .

Solution: From Table 3-2:
(a)

A � �
r̂cosφ � φ̂φφsinφ � � r cos φ 	 r sinφ �� r̂r cos φ

�
cos φ 	 sinφ � � φ̂φφr sin φ

�
cos φ 	 sinφ � �

P1 � � � 12 	 22 � tan � 1 � 2 � 1 � � 3 ��� � � 5 � 63  4 � � 3 � �
A
�
P1 ��� �

r̂0  447 � φ̂φφ0  894 � � 5
�  447 	  894 � � r̂1  34 � φ̂φφ2  68 

(b)

B � �
r̂cosφ � φ̂φφsinφ � � r sin φ � r cosφ � 	 �

φ̂φφcosφ 	 r̂sinφ � � r cos φ � r sinφ �� r̂r
�
2sin φcos φ � 1 � 	 φ̂φφr

�
cos2 φ � sin2 φ ��� r̂r

�
sin 2φ � 1 � 	 φ̂φφr cos 2φ �

P2 � � � 12 	 02 � tan � 1 � 0 � 1 � � 2 ��� �
1 � 0 � � 2 � �

B
�
P2 ��� � r̂ 	 φ̂φφ 

(c)

C � �
r̂cosφ � φ̂φφsinφ � r2 sin2 φ

r2 � �
φ̂φφcos φ 	 r̂sinφ � r2 cos2 φ

r2 	 ẑ4� r̂sinφcos φ
�
sin φ � cosφ � � φ̂φφ

�
sin3 φ 	 cos3 φ � 	 ẑ4 �

P3 � � � 12 	 � � 1 � 2 � tan � 1 � � 1 � 1 � � 2 ��� � � 2 � � 45 � � 2 � �
C
�
P3 ��� r̂0  707 	 ẑ4 

(d)

D � �
r̂sinθ 	 ẑcosθ � sinθ 	 �

r̂cos θ � ẑsin θ � cos θ 	 φ̂φφcos2 φ � r̂ 	 φ̂φφcos2 φ �
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P4 � �
2sin

�
π � 2 � � π � 4 � 2cos

�
π � 2 ����� �

2 � 45 � � 0 � �
D
�
P4 ��� r̂ 	 φ̂φφ1

2 
(e)

E � �
r̂sin θ 	 ẑcos θ � cos φ 	 �

r̂cosθ � ẑsinθ � sin φ 	 φ̂φφsin2 θ �
P5 � � 3 � π

2
� π � �

E
�
P5 ��� � r̂sin

π
2 	 ẑcos

π
2
� cos π 	 � r̂cos

π
2 � ẑsin

π
2
� sinπ 	 φ̂φφsin2 π

2
� � r̂ 	 φ̂φφ 

Problem 3.31 Transform the following vectors into spherical coordinates and then
evaluate them at the indicated points:

(a) A � x̂y2 	 ŷxz 	 ẑ4 at P1
�
1 � � 1 � 2 � ,

(b) B � ŷ
�
x2 	 y2 	 z2 � � ẑ

�
x2 	 y2 � at P2

� � 1 � 0 � 2 � ,
(c) C � r̂cos φ � φ̂φφsin φ 	 ẑcos φsinφ at P3

�
2 � π � 4 � 2 � , and

(d) D � x̂y2 � � x2 	 y2 � � ŷx2 � � x2 	 y2 � 	 ẑ4 at P4
�
1 � � 1 � 2 � .

Solution: From Table 3-2:
(a)

A � �
R̂sin θcosφ 	 θ̂θθcosθcos φ � φ̂φφsinφ � � Rsinθsinφ � 2
	 �

R̂sinθsin φ 	 θ̂θθcosθsin φ 	 φ̂φφcos φ � � Rsinθcos φ � � Rcosθ �
	 �

R̂cosθ � θ̂θθsinθ � 4� R̂
�
R2 sin2 θsin φcosφ

�
sin θsin φ 	 cosθ � 	 4cosθ �

	 θ̂θθ
�
R2 sinθcos θsinφcos φ

�
sin θsin φ 	 cosθ � � 4sinθ �

	 φ̂φφR2 sinθ
�
cos θcos2 φ � sinθsin3 φ � �

P1 � � � 12 	 � � 1 � 2 	 22 � tan � 1

� � 12 	 � � 1 � 2 � 2 
 � tan � 1 � � 1 � 1 � 

� � � 6 � 35  3 � � � 45 � � �

A
�
P1 ��� R̂2  856 � θ̂θθ2  888 	 φ̂φφ2  123 

(b)

B � �
R̂sinθsinφ 	 θ̂θθcosθsin φ 	 φ̂φφcosφ � R2 � �

R̂cosθ � θ̂θθsinθ � R2 sin2 θ� R̂R2 sinθ
�
sin φ � sinθcosθ � 	 θ̂θθR2 � cos θsinφ 	 sin3 θ � 	 φ̂φφR2 cosφ �

P2 � � � � � 1 � 2 	 02 	 22 � tan � 1

� � � � 1 � 2 	 02 � 2 
 � tan � 1 � 0 � � � 1 ��� 

� � � 5 � 26  6 � � 180 � � �
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B
�
P2 ��� � R̂0  896 	 θ̂θθ0  449 � φ̂φφ5 

(c)

C � �
R̂sin θ 	 θ̂θθcos θ � cos φ � φ̂φφsin φ 	 �

R̂cosθ � θ̂θθsinθ � cosφsin φ� R̂cosφ
�
sin θ 	 cosθsinφ � 	 θ̂θθcos φ

�
cos θ � sinθsin φ � � φ̂φφsinφ �

P3 � � � 22 	 22 � tan � 1 � 2 � 2 � � π � 4 � � �
2 � 2 � 45 � � 45 � � �

C
�
P3 ��� R̂0  854 	 θ̂θθ0  146 � φ̂φφ0  707 

(d)

D � �
R̂sinθcos φ 	 θ̂θθcosθcos φ � φ̂φφsin φ � R2 sin2 θsin2 φ

R2 sin2 θsin2 φ 	 R2 sin2 θcos2 φ

� �
R̂sinθsin φ 	 θ̂θθcos θsinφ 	 φ̂φφcosφ � R2 sin2 θcos2 φ

R2 sin2 θsin2 φ 	 R2 sin2 θcos2 φ

	 �
R̂cosθ � θ̂θθsinθ � 4� R̂
�
sinθcos φsin2 φ � sinθsin φcos2 φ 	 4cosθ �

	 θ̂θθ
�
cosθcos φsin2 φ � cosθsinφcos2 φ � 4sinθ �

� φ̂φφ
�
cos3 φ 	 sin3 φ � �

P4
�
1 � � 1 � 2 ��� P4 � � 1 	 1 	 4 � tan � 1 � � 1 	 1 � 2 � � tan � 1 � � 1 � 1 � �� P4

� � 6 � 35  26 � � � 45 � � �
D
�
P4 ��� R̂

�
sin35  26 � cos 45 � sin2 45 � � sin35  26 � sin

� � 45 � � cos2 45 � 	 4cos35  26 � �
	 θ̂θθ

�
cos35  26 � cos45 � sin2 45 � � cos35  26 � sin

� � 45 � � cos2 45 � � 4sin35  26 � �
� φ̂φφ

�
cos3 45 � 	 sin3 45 � �� R̂3  67 � θ̂θθ1  73 � φ̂φφ0  707 

Sections 3-4 to 3-7: Gradient, Divergence, and Curl Operators

Problem 3.32 Find the gradient of the following scalar functions:
(a) T � 3 � � x2 	 z2 � ,
(b) V � xy2z4,
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(c) U � zcos φ � � 1 	 r2 � ,
(d) W � e � R sin θ,
(e) S � 4x2e � z 	 y3,
(f) N � r2 cos2 φ,
(g) M � Rcosθsinφ.

Solution:
(a) From Eq. (3.72),

∇T � � x̂
6x�

x2 	 z2 � 2 � ẑ
6z�

x2 	 z2 � 2 
(b) From Eq. (3.72),

∇V � x̂y2z4 	 ŷ2xyz4 	 ẑ4xy2z3 
(c) From Eq. (3.82),

∇U � � r̂
2rzcos φ�
1 	 r2 � 2 � φ̂φφ

zsinφ
r
�
1 	 r2 � 	 ẑ

cosφ
1 	 r2 

(d) From Eq. (3.83),

∇W � � R̂e � R sinθ 	 θ̂θθ
�
e � R � R � cos θ 

(e) From Eq. (3.72),

S � 4x2e � z 	 y3 �
∇S � x̂

∂S
∂x 	 ŷ

∂S
∂y 	 ẑ

∂S
∂z

� x̂8xe � z 	 ŷ3y2 � ẑ4x2e � z 
(f) From Eq. (3.82),

N � r2 cos2 φ �
∇N � r̂

∂N
∂r 	 φ̂φφ

1
r

∂N
∂φ 	 ẑ

∂N
∂z

� r̂2r cos2 φ � φ̂φφ2r sin φcos φ 
(g) From Eq. (3.83),

M � Rcosθsin φ �
∇M � R̂

∂M
∂R 	 θ̂θθ

1
R

∂M
∂θ 	 φ̂φφ

1
Rsinθ

∂M
∂φ

� R̂cosθsin φ � θ̂θθsinθsin φ 	 φ̂φφ
cosφ
tanθ
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Problem 3.33 The gradient of a scalar function T is given by

∇T � ẑe � 3z 
If T � 10 at z � 0, find T

�
z � .

Solution:
∇T � ẑe � 3z 

By choosing P1 at z � 0 and P2 at any point z, (3.76) becomes

T
�
z � � T

�
0 ��� � z

0
∇T � dl � � � z

0
ẑe � 3z � � � x̂ dx � 	 ŷ dy � 	 ẑ dz � �

� � z

0
e � 3z � dz � � � � e � 3z �

3 �����

z

0

� 1
3

�
1 � e � 3z � 

Hence,

T
�
z ��� T

�
0 � 	 1

3

�
1 � e � 3z ��� 10 	 1

3

�
1 � e � 3z � 

Problem 3.34 Follow a procedure similar to that leading to Eq. (3.82) to derive the
expression given by Eq. (3.83) for ∇ in spherical coordinates.

Solution: From the chain rule and Table 3-2,

∇T � x̂
∂T
∂x 	 ŷ

∂T
∂y 	 ẑ

∂T
∂z

� x̂

�
∂T
∂R

∂R
∂x 	 ∂T

∂θ
∂θ
∂x 	 ∂T

∂φ
∂φ
∂x 


	 ŷ

�
∂T
∂R

∂R
∂y 	 ∂T

∂θ
∂θ
∂y 	 ∂T

∂φ
∂φ
∂y 


	 ẑ

�
∂T
∂R

∂R
∂z 	 ∂T

∂θ
∂θ
∂z 	 ∂T

∂φ
∂φ
∂z 


� x̂

�
∂T
∂R

∂
∂x
� x2 	 y2 	 z2 	 ∂T

∂θ
∂
∂x

tan � 1 � � x2 	 y2 � z � 	 ∂T
∂φ

∂
∂x

tan � 1 � y � x � 

	 ŷ

�
∂T
∂R

∂
∂y
� x2 	 y2 	 z2 	 ∂T

∂θ
∂
∂y

tan � 1 � � x2 	 y2 � z � 	 ∂T
∂φ

∂
∂y

tan � 1 � y � x � 

	 ẑ

�
∂T
∂R

∂
∂z
� x2 	 y2 	 z2 	 ∂T

∂θ
∂
∂z

tan � 1 � � x2 	 y2 � z � 	 ∂T
∂φ

∂
∂z

tan � 1 � y � x � 




144 CHAPTER 3

� x̂

�
∂T
∂R

x

� x2 	 y2 	 z2 	 ∂T
∂θ

z
x2 	 y2 	 z2

x

� x2 	 y2 	 ∂T
∂φ

� y
x2 	 y2 �

	 ŷ

�
∂T
∂R

y

� x2 	 y2 	 z2 	 ∂T
∂θ

z
x2 	 y2 	 z2

y

� x2 	 y2 	 ∂T
∂φ

x
x2 	 y2 �

	 ẑ

�
∂T
∂R

z

� x2 	 y2 	 z2 	 ∂T
∂θ

� 1
x2 	 y2 	 z2

� x2 	 y2 	 ∂T
∂φ

0 �
� x̂

�
∂T
∂R

Rsinθcosφ
R 	 ∂T

∂θ
Rcosθ

R2

Rsinθcosφ
Rsinθ 	 ∂T

∂φ
� Rsinθsin φ

R2 sin2 θ 

	 ŷ

�
∂T
∂R

Rsinθsin φ
R 	 ∂T

∂θ
Rcosθ

R2

Rsinθsin φ
Rsinθ 	 ∂T

∂φ
Rsinθcos φ

R2 sin2 θ 

	 ẑ

�
∂T
∂R

Rcosθ
R 	 ∂T

∂θ
� Rsinθ

R2 

� x̂

�
∂T
∂R

sinθcos φ 	 ∂T
∂θ

cosθcos φ
R 	 ∂T

∂φ
� sinφ
Rsinθ 


	 ŷ

�
∂T
∂R

sinθsin φ 	 ∂T
∂θ

cosθsin φ
R 	 ∂T

∂φ
cosφ

Rsinθ 

	 ẑ

�
∂T
∂R

cosθ 	 ∂T
∂θ

� sinθ
R 


� �
x̂sinθcos φ 	 ŷsinθsin φ 	 ẑcosθ � ∂T

∂R

	 �
x̂cosθcos φ 	 ŷcosθsin φ � ẑsinθ � 1

R
∂T
∂θ

	 � � x̂sinφ 	 ŷcosφ � 1
Rsinθ

∂T
∂φ

� R̂
∂T
∂R 	 θ̂θθ

1
R

∂T
∂θ 	 φ̂φφ

1
Rsinθ

∂T
∂φ

�
which is Eq. (3.83).

Problem 3.35 For the scalar function V � xy2 � z2, determine its directional
derivative along the direction of vector A � �

x̂ � ŷz � and then evaluate it at
P
�
1 � � 1 � 4 � .

Solution: The directional derivative is given by Eq. (3.75) as dV � dl � ∇V � âl , where
the unit vector in the direction of A is given by Eq. (3.2):

âl � x̂ � ŷz� 1 	 z2
�
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and the gradient of V in Cartesian coordinates is given by Eq. (3.72):

∇V � x̂y2 	 ŷ2xy � ẑ2z 
Therefore, by Eq. (3.75),

dV
dl

� y2 � 2xyz� 1 	 z2


At P
�
1 � � 1 � 4 � , �

dV
dl 
 ����

� 1 � � 1 � 4 �
� 9� 17

� 2  18 
Problem 3.36 For the scalar function T � 1

2 e � r � 5 cosφ, determine its directional
derivative along the radial direction r̂ and then evaluate it at P

�
2 � π � 4 � 3 � .

Solution:

T � 1
2

e � r � 5 cosφ �
∇T � r̂

∂T
∂r 	 φ̂φφ

1
r

∂T
∂φ 	 ẑ

∂T
∂z

� � r̂
e � r � 5 cosφ

10 � φ̂φφ
e � r � 5 sinφ

2r
�

dT
dl

� ∇T � r̂ � � e � r � 5 cosφ
10

�
dT
dl ����

� 2 � π � 4 � 3 �
� � e � 2 � 5 cos π

4

10
� � 4  74 � 10 � 2 

Problem 3.37 For the scalar function U � 1
R sin2 θ, determine its directional

derivative along the range direction R̂ and then evaluate it at P
�
5 � π � 4 � π � 2 � .

Solution:

U � 1
R

sin2 θ �
∇U � R̂

∂U
∂R 	 θ̂θθ

1
R

∂U
∂θ 	 φ̂φφ

1
Rsinθ

∂U
∂φ

� � R̂
sin2 θ

R2 � θ̂θθ
2sin θcos θ

R
�

dU
dl

� ∇U � R̂ � � sin2 θ
R2 �

dU
dl ����

� 5 � π � 4 � π � 2 � � � sin2 � π � 4 �
25

� � 0  02 
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Problem 3.38 Vector field E is characterized by the following properties: (a) E
points along R̂, (b) the magnitude of E is a function of only the distance from the
origin, (c) E vanishes at the origin, and (d) ∇ � E � 12, everywhere. Find an expression
for E that satisfies these properties.

Solution: According to properties (a) and (b), E must have the form

E � R̂ER

where ER is a function of R only.

∇ � E � 1
R2

∂
∂R

�
R2ER ��� 12 �

∂
∂R

�
R2ER ��� 12R2 �

� R

0

∂
∂R

�
R2ER � dR � � R

0
12R2 dR �

R2ER � R0 � 12R3

3 ����

R

0
�

R2ER � 4R3 
Hence,

ER � 4R �
and

E � R̂4R 
Problem 3.39 For the vector field E � x̂xz � ŷyz2 � ẑxy, verify the divergence
theorem by computing:

(a) the total outward flux flowing through the surface of a cube centered at the
origin and with sides equal to 2 units each and parallel to the Cartesian axes,
and

(b) the integral of ∇ � E over the cube’s volume.

Solution:
(a) For a cube, the closed surface integral has 6 sides:

�

�
E � ds � Ftop 	 Fbottom 	 Fright 	 Fleft 	 Ffront 	 Fback �
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Ftop � � 1

x � � 1

� 1

y � � 1
� x̂xz � ŷyz2 � ẑxy � ��

z � 1 � � ẑ dy dx �
� � � 1

x � � 1

� 1

y � � 1
xy dy dx � � �

x2y2

4 
 ����

1

y � � 1
� �����

1

x � � 1

� 0 �
Fbottom � � 1

x � � 1

� 1

y � � 1
� x̂xz � ŷyz2 � ẑxy � ��

z � � 1 � � � ẑ dy dx �
� � 1

x � � 1

� 1

y � � 1
xy dy dx � � �

x2y2

4 
 ����

1

y � � 1
� �����

1

x � � 1

� 0 �
Fright � � 1

x � � 1

� 1

z � � 1
� x̂xz � ŷyz2 � ẑxy � ��

y � 1 � � ŷ dz dx �
� � � 1

x � � 1

� 1

z � � 1
z2 dz dx � �

� �
xz3

3 
 ����

1

z � � 1
� �����

1

x � � 1

� � 4
3

�
Fleft � � 1

x � � 1

� 1

z � � 1
� x̂xz � ŷyz2 � ẑxy � ��

y � � 1 � � � ŷ dz dx �
� � � 1

x � � 1

� 1

z � � 1
z2 dz dx � �

� �
xz3

3 
 ����

1

z � � 1
� �����

1

x � � 1

� � 4
3

�
Ffront � � 1

y � � 1

� 1

z � � 1
� x̂xz � ŷyz2 � ẑxy � ��

x � 1 � � x̂ dz dy �
� � 1

y � � 1

� 1

z � � 1
z dz dy � � �

yz2

2 
 ����

1

z � � 1
� �����

1

y � � 1

� 0 �
Fback � � 1

y � � 1

� 1

z � � 1
� x̂xz � ŷyz2 � ẑxy � ��

x � � 1 � � � x̂ dz dy �
� � 1

y � � 1

� 1

z � � 1
z dz dy � � �

yz2

2 
 ����

1

z � � 1
� �����

1

y � � 1

� 0 �
�

�
E � ds � 0 	 0 	 � 4

3 	 � 4
3 	 0 	 0 � � 8

3
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(b)

� � �
∇ � E dv � � 1

x � � 1

� 1

y � � 1

� 1

z � � 1
∇ � � x̂xz � ŷyz2 � ẑxy � dz dy dx

� � 1

x � � 1

� 1

y � � 1

� 1

z � � 1

�
z � z2 � dz dy dx

�
�� � �

xy

�
z2

2 � z3

3 
 
 ����

1

z � � 1
� �����

1

y � � 1

��
������

1

x � � 1

� � 8
3


Problem 3.40 For the vector field E � r̂10e � r � ẑ3z, verify the divergence theorem
for the cylindrical region enclosed by r � 2, z � 0, and z � 4.

Solution:

�

�
E � ds � � 2

r � 0

� 2π

φ � 0
� � r̂10e � r � ẑ3z � � � � ẑr dr dφ � � ��

z � 0

	 � 2π

φ � 0

� 4

z � 0
� � r̂10e � r � ẑ3z � � � r̂r dφ dz � � ��

r � 2

	 � 2

r � 0

� 2π

φ � 0
� � r̂10e � r � ẑ3z � � � ẑr dr dφ � � ��

z � 4

� 0 	 � 2π

φ � 0

� 4

z � 0
10e � 22 dφ dz 	 � 2

r � 0

� 2π

φ � 0 � 12r dr dφ

� 160πe � 2 � 48π � � 82  77 �� � �
∇ � E dV � � 4

z � 0

� 2

r � 0

� 2π

φ � 0

�
10e � r � 1 � r �

r � 3 
 r dφ dr dz

� 8π
� 2

r � 0

�
10e � r � 1 � r � � 3r � dr

� 8π
�
� 10e � r 	 10e � r � 1 	 r � � 3r2

2 
 ����

2

r � 0� 160πe � 2 � 48π � � 82  77 
Problem 3.41 A vector field D � r̂r3 exists in the region between two concentric
cylindrical surfaces defined by r � 1 and r � 2, with both cylinders extending
between z � 0 and z � 5. Verify the divergence theorem by evaluating:

(a) �

�
S

D � ds,
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(b)
�

V
∇ � D dV .

Solution:
(a)

� �
D � ds � Finner 	 Fouter 	 Fbottom 	 Ftop �
Finner � � 2π

φ � 0

� 5

z � 0
� � r̂r3 � � � � r̂r dz dφ � � ��

r � 1

� � 2π

φ � 0

� 5

z � 0
� � r4 dz dφ � ��

r � 1 � � 10π �
Fouter � � 2π

φ � 0

� 5

z � 0
� � r̂r3 � � � r̂r dz dφ � � ��

r � 2

� � 2π

φ � 0

� 5

z � 0
� r4 dz dφ � ��

r � 2 � 160π �
Fbottom � � 2

r � 1

� 2π

φ � 0
� � r̂r3 � � � � ẑr dφ dr � � ��

z � 0 � 0 �
Ftop � � 2

r � 1

� 2π

φ � 0
� � r̂r3 � � � ẑr dφ dr � � ��

z � 5 � 0 
Therefore,

���
D � ds � 150π.

(b) From the back cover, ∇ �D � �
1 � r � � ∂ � ∂r � � rr3 ��� 4r2. Therefore,

� � �
∇ �D dV � � 5

z � 0

� 2π

φ � 0

� 2

r � 1
4r2r dr dφ dz � � � � r4 � ��

2
r � 1 � ���

2π

φ � 0

 ����

5

z � 0
� 150π 

Problem 3.42 For the vector field D � R̂3R2, evaluate both sides of the divergence
theorem for the region enclosed between the spherical shells defined by R � 1 and
R � 2.

Solution: The divergence theorem is given by Eq. (3.98). Evaluating the left hand
side:

�
V

∇ �D dV � � 2π

φ � 0

� π

θ � 0

� 2

R � 1

�
1

R2

∂
∂R

�
R2 � 3R2 � � 
 R2 sinθ dR dθ dφ

� 2π
� � cosθ � � πθ � 0 � 3R4 � ��

2
R � 1 � 180π 
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The right hand side evaluates to

�

�
S

D � ds � � � 2π

φ � 0

� π

θ � 0

�
R̂3R2 � � � � R̂R2 sinθ dθ dφ � 
 ����

R � 1

	
� � 2π

φ � 0

� π

θ � 0

�
R̂3R2 � � � R̂R2 sinθ dθ dφ � 
 ����

R � 2� � 2π
� π

θ � 0
3sin θ dθ 	 2π

� π

θ � 0
48sin θ dθ � 180π 

Problem 3.43 For the vector field E � x̂xy � ŷ
�
x2 	 2y2 � , calculate

(a) �

�
C

E � dl around the triangular contour shown in Fig. P3.43(a), and

(b)
�

S

�
∇ � � � E ��� ds over the area of the triangle.

Solution: In addition to the independent condition that z � 0, the three lines of the
triangle are represented by the equations y � 0, x � 1, and y � x, respectively.

1

1
x

y

1

1 2
x

y

(a) (b)

0 0

L3 L2

L1
L2

L1

L3

Figure P3.43: Contours for (a) Problem 3.43 and (b) Problem 3.44.

(a)

�

�
E � dl � L1 	 L2 	 L3 �

L1 � � �
x̂xy � ŷ

�
x2 	 2y2 � � � � x̂ dx 	 ŷ dy 	 ẑ dz �

� � 1

x � 0

�
xy � � y � 0 � z � 0 dx � � 0

y � 0
� x2 	 2y2 � ��

z � 0 dy 	 � 0

z � 0

�
0 � � y � 0 dz � 0 �
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L2 � � �
x̂xy � ŷ

�
x2 	 2y2 � � � � x̂ dx 	 ŷ dy 	 ẑ dz �

� � 1

x � 1

�
xy � � z � 0 dx � � 1

y � 0
� x2 	 2y2 � ��

x � 1 � z � 0 dy 	 � 0

z � 0

�
0 � � x � 1 dz

� 0 �
�

y 	 2y3

3 
 ����

1

y � 0 	 0 � � 5
3

�
L3 � � �

x̂xy � ŷ
�
x2 	 2y2 � � � � x̂ dx 	 ŷ dy 	 ẑ dz �

� � 0

x � 1

�
xy � � y � x � z � 0 dx � � 0

y � 1
� x2 	 2y2 � ��

x � y� z � 0 dy 	 � 0

z � 0

�
0 � � y � x dz

� �
x3

3 
 ����

0

x � 1 � � y3 � ��
0
y � 1 	 0 � 2

3


Therefore,

�

�
E � dl � 0 � 5

3 	 2
3
� � 1 

(b) From Eq. (3.105), ∇ � E � � ẑ3x � so that� �
∇ � E � ds � � 1

x � 0

� x

y � 0

� � � ẑ3x � � � ẑ dy dx � � � z � 0

� � � 1

x � 0

� x

y � 0
3x dy dx � � � 1

x � 0
3x
�
x � 0 � dx � � � x3 � ��

1
0 � � 1 

Problem 3.44 Repeat Problem 3.43 for the contour shown in Fig. P3.43(b).

Solution: In addition to the independent condition that z � 0, the three lines of the
triangle are represented by the equations y � 0, y � 2 � x, and y � x, respectively.

(a)

�

�
E � dl � L1 	 L2 	 L3 �

L1 � � �
x̂xy � ŷ

�
x2 	 2y2 � � � � x̂ dx 	 ŷ dy 	 ẑ dz �

� � 2

x � 0

�
xy � � y � 0 � z � 0 dx � � 0

y � 0
� x2 	 2y2 � ��

z � 0 dy 	 � 0

z � 0

�
0 � � y � 0 dz � 0 �

L2 � � �
x̂xy � ŷ

�
x2 	 2y2 � � � � x̂ dx 	 ŷ dy 	 ẑ dz �

� � 1

x � 2

�
xy � � z � 0 � y � 2 � x dx � � 1

y � 0
� x2 	 2y2 � ��

x � 2 � y� z � 0 dy 	 � 0

z � 0

�
0 � � y � 2 � x dz

� �
x2 � x3

3 
 ����

1

x � 2 � � 4y � 2y2 	 y3 � ��
1
y � 0 	 0 � � 11

3
�
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L3 � � �
x̂xy � ŷ

�
x2 	 2y2 � � � � x̂ dx 	 ŷ dy 	 ẑ dz �

� � 0

x � 1

�
xy � � y � x � z � 0 dx � � 0

y � 1
� x2 	 2y2 � ��

x � y� z � 0 dy 	 � 0

z � 0

�
0 � � y � x dz

� �
x3

3 
 ����

0

x � 1 � � y3 � ��
0
y � 1 	 0 � 2

3


Therefore,

�

�
E � dl � 0 � 11

3 	 2
3
� � 3 

(b) From Eq. (3.105), ∇ � E � � ẑ3x � so that

� �
∇ � E � ds � � 1

x � 0

� x

y � 0

� � � ẑ3x � � � ẑ dy dx � � � z � 0

	 � 2

x � 1

� 2 � x

y � 0

� � � ẑ3x � � � ẑ dy dx ��� � z � 0

� � � 1

x � 0

� x

y � 0
3x dy dx � � 2

x � 1

� 2 � x

y � 0
3x dy dx

� � � 1

x � 0
3x
�
x � 0 � dx � � 2

x � 1
3x
� �

2 � x � � 0 � dx

� � � x3 � ��
1
0 � � 3x2 � x3 � ��

2
x � 1 � � 3 

Problem 3.45 Verify Stokes’s theorem for the vector field B � �
r̂r cos φ 	 φ̂φφsinφ �

by evaluating:

(a) �

�
C

B � dl over the semicircular contour shown in Fig. P3.46(a), and

(b)
�

S

�
∇ � � � B ��� ds over the surface of the semicircle.

Solution:
(a)

�

�
B � dl � �

L1

B � dl 	 �
L2

B � dl 	 �
L3

B � dl �
B � dl � �

r̂r cos φ 	 φ̂φφsin φ � � � r̂ dr 	 φ̂φφr dφ 	 ẑ dz ��� r cos φ dr 	 r sinφ dφ ��
L1

B � dl � � � 2

r � 0
r cos φ dr 
 ����

φ � 0 � z � 0 	
� � 0

φ � 0
r sin φ dφ 
 ����

z � 0� � 1
2r2 � ��

2
r � 0 	 0 � 2 �



CHAPTER 3 153

2
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yy

(a) (b)

L2 L2L3

L4 L1

L1L3

Figure P3.46: Contour paths for (a) Problem 3.45 and (b) Problem 3.46.

�
L2

B � dl � � � 2

r � 2
r cos φ dr 
 ����

z � 0 	
� � π

φ � 0
r sinφ dφ 
 ����

r � 2 � z � 0� 0 	 � � 2cosφ � � πφ � 0 � 4 �
�

L3

B � dl � � � 0

r � 2
r cos φ dr 
 ����

φ � π � z � 0 	
� � π

φ � π
r sin φ dφ 
 ����

z � 0� � � 1
2r2 � ��

0
r � 2 	 0 � 2 �

�

�
B � dl � 2 	 4 	 2 � 8 

(b)

∇ � B � ∇ � � r̂r cos φ 	 φ̂φφsinφ �
� r̂

�
1
r

∂
∂φ

0 � ∂
∂z

�
sinφ � 
 	 φ̂φφ

�
∂
∂z

�
r cos φ � � ∂

∂r
0 


	 ẑ
1
r

�
∂
∂r

�
r
�
sin φ � � � ∂

∂φ
�
r cos φ � 


� r̂0 	 φ̂φφ0 	 ẑ
1
r

�
sinφ 	 �

r sin φ � ��� ẑsinφ
�

1 	 1
r 
 �

� �
∇ � B � ds � � π

φ � 0

� 2

r � 0

�
ẑsinφ

�
1 	 1

r 
 
 � � ẑr dr dφ �
� � π

φ � 0

� 2

r � 0
sinφ

�
r 	 1 � dr dφ � � � � cosφ

� 1
2 r2 	 r � � ��

2
r � 0 � ���

π

φ � 0
� 8 

Problem 3.46 Repeat Problem 3.45 for the contour shown in Fig. P3.46(b).

Solution:
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(a)

�

�
B � dl � �

L1

B � dl 	 �
L2

B � dl 	 �
L3

B � dl 	 �
L4

B � dl �
B � dl � �

r̂r cos φ 	 φ̂φφsin φ � � � r̂ dr 	 φ̂φφr dφ 	 ẑ dz ��� r cos φ dr 	 r sinφ dφ ��
L1

B � dl � � � 2

r � 1
r cos φ dr 
 ����

φ � 0 � z � 0 	
� � 0

φ � 0
r sin φ dφ 
 ����

z � 0� � 1
2r2 � ��

2
r � 1 	 0 � 3

2
�

�
L2

B � dl � � � 2

r � 2
r cos φ dr 
 ����

z � 0 	
� � π �

φ � 0
r sinφ dφ 
 ����

r � 2 � z � 0� 0 	 � � 2cosφ � � π � 2φ � 0 � 2 �
�

L3

B � dl � � � 1

r � 2
r cos φ dr 
 ����

φ � π � 2 � z � 0 	
� � π � 2

φ � π � 2 r sin φ dφ 
 ����
z � 0

� 0 �
�

L4

B � dl � � � 1

r � 1
r cos φ dr 
 ����

z � 0 	
� � 0

φ � π � 2 r sin φ dφ 
 ����
r � 1 � z � 0� 0 	 � � cosφ � � 0φ � π � 2 � � 1 �

�

�
B � dl � 3

2 	 2 	 0 � 1 � 5
2


(b)

∇ � B � ∇ � � r̂r cos φ 	 φ̂φφsin φ �
� r̂

�
1
r

∂
∂φ

0 � ∂
∂z

�
sinφ � 
 	 φ̂φφ

�
∂
∂z

�
r cos φ � � ∂

∂r
0 


	 ẑ
1
r

�
∂
∂r

�
r
�
sin φ ��� � ∂

∂φ
�
r cos φ � 


� r̂0 	 φ̂φφ0 	 ẑ
1
r

�
sinφ 	 �

r sin φ � ��� ẑsinφ
�

1 	 1
r 
 �

� �
∇ � B � ds � � π � 2

φ � 0

� 2

r � 1

�
ẑsin φ

�
1 	 1

r 
 
 � � ẑr dr dφ �
� � π � 2

φ � 0

� 2

r � 1
sinφ

�
r 	 1 � dr dφ

� � � � cosφ
� 1

2r2 	 r � � ��
2
r � 1 � ���

π � 2
φ � 0

� 5
2
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Problem 3.47 Verify Stokes’s Theorem for the vector field A � R̂cosθ 	 φ̂φφsinθ by
evaluating it on the hemisphere of unit radius.

Solution:
A � R̂cos θ 	 φ̂φφsinθ � R̂AR 	 θ̂θθAθ 	 φ̂φφAφ 

Hence, AR � cosθ, Aθ � 0, Aφ � sinθ.

∇ � A � R̂
1

Rsinθ

�
∂

∂θ
�
Aφ sinθ � 
 � θ̂θθ

1
R

∂
∂R

�
RAφ � � φ̂φφ

1
R

∂AR

∂θ

� R̂
1

Rsinθ
∂

∂θ
�
sin2 θ � � θ̂θθ

1
R

∂
∂R

�
Rsinθ � � φ̂φφ

1
R

∂
∂θ

�
cos θ �

� R̂
2cos θ

R � θ̂θθ
sin θ

R 	 φ̂φφ
sinθ

R


For the hemispherical surface, ds � R̂R2 sinθ dθ dφ.

� 2π

φ � 0

� π � 2
θ � 0

�
∇ � A � � ds

� � 2π

φ � 0

� π � 2
θ � 0

�
R̂2cos θ

R � θ̂θθ
sinθ

R 	 φ̂φφ
sin θ

R 
 � R̂R2 sinθ dθ dφ ����
R � 1

� 4πR
sin2 θ

2 ����

π � 2
0

�����
R � 1

� 2π 
The contour C is the circle in the x–y plane bounding the hemispherical surface.

�

�
C

A � dl � � 2π

φ � 0

�
R̂cosθ 	 φ̂φφsinθ � � φ̂φφR dφ ����

θ � π � 2
R � 1

� Rsinθ
� 2π

0
dφ ����

θ � π � 2
R � 1

� 2π 
Problem 3.48 Determine if each of the following vector fields is solenoidal,
conservative, or both:

(a) A � x̂x2 � ŷy2xy,
(b) B � x̂x2 � ŷy2 	 ẑ2z,
(c) C � r̂

�
sin φ � � r2 	 φ̂φφ

�
cosφ � � r2,

(d) D � R̂ � R,
(e) E � r̂ � 3 � r

1 � r � 	 ẑz,
(f) F � �

x̂y 	 ŷx � � � x2 	 y2 � ,
(g) G � x̂

�
x2 	 z2 � � ŷ

�
y2 	 x2 � � ẑ

�
y2 	 z2 � ,

(h) H � R̂
�
Re � R � .



156 CHAPTER 3

Solution:
(a)

∇ �A � ∇ � � x̂x2 � ŷ2xy ��� ∂
∂x

x2 � ∂
∂y

2xy � 2x � 2x � 0 �
∇ � A � ∇ � � x̂x2 � ŷ2xy �

� x̂

�
∂
∂y

0 � ∂
∂z

� � 2xy � 
 	 ŷ

�
∂
∂z

�
x2 � � ∂

∂x
0 
 	 ẑ

�
∂
∂x

� � 2xy � � ∂
∂y

�
x2 � 


� x̂0 	 ŷ0 � ẑ
�
2y � �� 0 

The field A is solenoidal but not conservative.
(b)

∇ �B � ∇ � � x̂x2 � ŷy2 	 ẑ2z ��� ∂
∂x

x2 � ∂
∂y

y2 	 ∂
∂z

2z � 2x � 2y 	 2 �� 0 �
∇ � B � ∇ � � x̂x2 � ŷy2 	 ẑ2z �

� x̂

�
∂
∂y

�
2z � � ∂

∂z

� � y2 � 
 	 ŷ

�
∂
∂z

�
x2 � � ∂

∂x

�
2z � 
 	 ẑ

�
∂
∂x

� � y2 � � ∂
∂y

�
x2 � 


� x̂0 	 ŷ0 	 ẑ0 
The field B is conservative but not solenoidal.

(c)

∇ �C � ∇ � � r̂
sinφ
r2 	 φ̂φφ

cosφ
r2 


� 1
r

∂
∂r

�
r

�
sinφ
r2 
 
 	 1

r
∂

∂φ

�
cosφ

r2 
 	 ∂
∂z

0

� � sinφ
r3 	 � sinφ

r3 	 0 � � 2sin φ
r3 �

∇ � C � ∇ � �
r̂

sinφ
r2 	 φ̂φφ

cos φ
r2 


� r̂

�
1
r

∂
∂φ

0 � ∂
∂z

�
cosφ

r2 
 
 	 φ̂φφ
�

∂
∂z

�
sinφ
r2 
 � ∂

∂r
0 


	 ẑ
1
r

�
∂
∂r

�
r

�
cosφ

r2 
 
 � ∂
∂φ

�
sinφ
r2 
 


� r̂0 	 φ̂φφ0 	 ẑ
1
r

�
�
�

cosφ
r2 
 �

�
cosφ

r2 
 
 � ẑ � 2cosφ
r3 

The field C is neither solenoidal nor conservative.
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(d)

∇ �D � ∇ � � R̂
R � � 1

R2

∂
∂R

�
R2

�
1
R 
 
 	 1

Rsinθ
∂

∂θ
�
0sin θ � 	 1

Rsinθ
∂

∂φ
0 � 1

R2 �
∇ � D � ∇ � �

R̂
R �

� R̂
1

Rsinθ

�
∂

∂θ
�
0sin θ � � ∂

∂φ
0 
 	 θ̂θθ

1
R

�
1

sinθ
∂

∂φ

�
1
R 
 � ∂

∂R

�
R
�
0 ��� 


	 φ̂φφ
1
R

�
∂

∂R

�
R
�
0 � � � ∂

∂θ

�
1
R 
 
 � r̂0 	 θ̂θθ0 	 φ̂φφ0 

The field D is conservative but not solenoidal.
(e)

E � r̂

�
3 � r

1 	 r 
 	 ẑz �
∇ � E � 1

r
∂
∂r

�
rEr � 	 1

r

∂Eφ

∂φ 	 ∂Ez

∂z

� 1
r

∂
∂r

�
3r � r2

1 	 r 
 	 1

� 1
r

�
3 � 2r

1 	 r 	 r2�
1 	 r � 2 � 	 1

� 1
r

�
3 	 3r2 	 6r � 2r � 2r2 	 r2�

1 	 r � 2 � 	 1 � 2r2 	 4r 	 3
r
�
1 	 r � 2 	 1 �� 0 �

∇ � E � r̂

�
1
r

∂Ez

∂φ � ∂Eφ

∂z 
 	 φ̂φφ
�

∂Er

∂z � ∂Ez

∂r 
 	 ẑ

�
1
r

∂
∂r

�
rEφ � � 1

r
∂Er

∂φ 
 � 0 
Hence, E is conservative, but not solenoidal.

(f)

F � x̂y 	 ŷx
x2 	 y2 � x̂

y
x2 	 y2 	 ŷ

x
x2 	 y2 �

∇ � F � ∂
∂x

�
y

x2 	 y2 
 	 ∂
∂y

�
x

x2 	 y2 

� � 2xy�

x2 	 y2 � 2 	 � 2xy�
x2 	 y2 � 2 �� 0 �
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∇ � F � x̂
�
0 � 0 � 	 ŷ

�
0 � 0 � 	 ẑ

�
∂
∂x

�
x

x2 	 y2 
 � ∂
∂y

�
y

x2 	 y2 
 �
� ẑ

�
1

x2 	 y2 � 2x2�
x2 	 y2 � 2 � 1

x2 	 y2 	 2y2�
x2 	 y2 � 2 


� ẑ
2
�
y2 � x2 ��

x2 	 y2 � 2 �� 0 
Hence, F is neither solenoidal nor conservative.

(g)

G � x̂
�
x2 	 z2 � � ŷ

�
y2 	 x2 � � ẑ

�
y2 	 z2 � �

∇ � G � ∂
∂x

�
x2 	 z2 � � ∂

∂y

�
y2 	 x2 � � ∂

∂z

�
y2 	 z2 �

� 2x � 2y � 2z �� 0 �
∇ � G � x̂

�
� ∂

∂y

�
y2 	 z2 � 	 ∂

∂z

�
y2 	 x2 � 
 	 ŷ

�
∂
∂z

�
x2 	 z2 � 	 ∂

∂x

�
y2 	 z2 � 


	 ẑ

�
� ∂

∂x

�
y2 	 x2 � � ∂

∂y

�
x2 	 z2 � 


� � x̂2y 	 ŷ2z � ẑ2x �� 0 
Hence, G is neither solenoidal nor conservative.

(h)

H � R̂
�
Re � R � �

∇ � H � 1
R2

∂
∂R

�
R3e � R ��� 1

R2

�
3R2e � R � R3e � R ��� e � R � 3 � R � �� 0 �

∇ � H � 0 
Hence, H is conservative, but not solenoidal.

Problem 3.49 Find the Laplacian of the following scalar functions:
(a) V � 4xy2z3,
(b) V � xy 	 yz 	 zx,
(c) V � 3 � � x2 	 y2 � ,
(d) V � 5e � r cosφ,
(e) V � 10e � R sinθ.

Solution:
(a) From Eq. (3.110), ∇2 � 4xy2z3 ��� 8xz3 	 24xy2z 
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(b) ∇2 � xy 	 yz 	 zx ��� 0 
(c) From the inside back cover of the book,

∇2

�
3

x2 	 y2 
 � ∇2 � 3r � 2 ��� 12r � 4 � 12�
x2 	 y2 � 2 

(d)

∇2 � 5e � r cosφ ��� 5e � r cosφ
�

1 � 1
r � 1

r2 
 
(e)

∇2 � 10e � R sinθ ��� 10e � R

�
sinθ

�
1 � 2

R 
 	 cos2 θ � sin2 θ
R2 sinθ 
 

Problem 3.50 Find a vector G whose magnitude is 4 and whose direction is
perpendicular to both vectors E and F, where E � x̂ 	 ŷ2 � ẑ2 and F � ŷ3 � ẑ6.

Solution: The cross product of two vectors produces a third vector which is
perpendicular to both of the original vectors. Two vectors exist that satisfy the stated
conditions, one along E � � � F and another along the opposite direction. Hence,

G � � 4
E � � � F
�E � � � F � � � 4

�
x̂ 	 ŷ2 � ẑ2 � � � � �

ŷ3 � ẑ6 �
� � x̂ 	 ŷ2 � ẑ2 � � � � �

ŷ3 � ẑ6 � �
� � 4

� � x̂6 	 ŷ6 	 ẑ3 �� 36 	 36 	 9� � 4
9

� � x̂6 	 ŷ6 	 ẑ3 ��� � �
� x̂

8
3 	 ŷ

8
3 	 ẑ

4
3 
 

Problem 3.51 A given line is described by the equation:

y � x � 1 
Vector A starts at point P1

�
0 � 2 � and ends at point P2 on the line such that A is

orthogonal to the line. Find an expression for A.

Solution: We first plot the given line.
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P1 (0, 2)

y

x

BA

P4 (1, 0)

P3 (0, -1)

P2 (x, x-1)

Next we find a vector B which connects point P3
�
0 � 1 � to point P4

�
1 � 0 � , both of which

are on the line. Hence,

B � x̂
�
1 � 0 � 	 ŷ

�
0 	 1 ��� x̂ 	 ŷ 

Vector A starts at P1
�
0 � 2 � and ends on the line at P2. If the x-coordinate of P2 is x,

then its y-coordinate has to be y � x � 1, per the equation for the line. Thus, P2 is at�
x � x � 1 � , and vector A is

A � x̂
�
x � 0 � 	 ŷ

�
x � 1 � 2 ��� x̂x 	 ŷ

�
x � 3 � 

Since A is orthogonal to B,

A � B � 0 �
� x̂x 	 ŷ

�
x � 3 ��� � � x̂ 	 ŷ ��� 0

x 	 x � 3 � 0

x � 3
2


Finally,

A � x̂x 	 ŷ
�
x � 3 ��� x̂

3
2 	 ŷ

�
3
2 � 3 


� x̂
3
2 � ŷ

3
2
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Problem 3.52 Vector field E is given by

E � R̂ 5Rcos θ � θ̂θθ
12
R

sin θcosφ 	 φ̂φφ3sin φ 
Determine the component of E tangential to the spherical surface R � 2 at point
P
�
2 � 30 � � 60 � � .

Solution: At P, E is given by

E � R̂ 5 � 2cos 30 � � θ̂θθ
12
2

sin30 � cos60 � 	 φ̂φφ3sin 60 �� R̂ 8  67 � θ̂θθ1  5 	 φ̂φφ2  6 
The R̂ component is normal to the spherical surface while the other two are tangential.
Hence,

Et � � θ̂θθ1  5 	 φ̂φφ2  6 
Problem 3.53 Transform the vector

A � R̂sin2 θcos φ 	 θ̂θθcos2 φ � φ̂φφsinφ

into cylindrical coordinates and then evaluate it at P
�
2 � π � 2 � π � 2 � .

Solution: From Table 3-2,

A � �
r̂ sinθ 	 ẑcosθ � sin2 θcosφ 	 �

r̂ cos θ � ẑsin θ � cos2 φ � φ̂φφsinφ� r̂
�
sin3 θcosφ 	 cosθcos2 φ � � φ̂φφsinφ 	 ẑ

�
cosθsin2 θcos φ � sinθcos2 φ �

At P
�
2 � π � 2 � π � 2 � ,

A � � φ̂φφ 
Problem 3.54 Evaluate the line integral of E � x̂x � ŷy along the segment P1 to P2

of the circular path shown in the figure.

x

y

P1 (0, 3)

P2 (-3, 0)



162 CHAPTER 3

Solution: We need to calculate:
� P2

P1

E � d � � � 
Since the path is along the perimeter of a circle, it is best to use cylindrical
coordinates, which requires expressing both E and d � � � in cylindrical coordinates.
Using Table 3-2,

E � x̂x � ŷy � �
r̂ cos φ � φ̂φφsin φ � r cos φ � �

r̂ sinφ 	 φ̂φφcosφ � r sin φ� r̂ r
�
cos2 φ � sin2 φ � � φ̂φφ2r sin φcos φ

The designated path is along the φ-direction at a constant r � 3. From Table 3-1, the
applicable component of d � � � is:

d � � � � φ̂φφ r dφ 
Hence,

� P2

P1

E � d � � � � � φ � 180 �

φ � 90 �
� r̂r

�
cos2 φ � sin2 φ � � φ̂φφ 2r sin φcosφ � � φ̂φφ r dφ ���

r � 3

� � 180 �

90 � � 2r2 sinφcos φ dφ ��
r � 3

� � 2r2 sin2 φ
2 ����

180 �

φ � 90 �
�����
r � 3

� 9 
Problem 3.55 Verify Stokes’s theorem for the vector field B � �

r̂ cosφ 	 φ̂φφsinφ � by
evaluating:

(a) �

�
C

B � d � � � over the path comprising a quarter section of a circle, as shown in the

figure, and

(b)
�

S

�
∇ � � � B ��� ds over the surface of the quarter section.

y

(-3, 0)

(0, 3)

x

L2

L3

L1
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Solution:
(a)

�

�
C

B � d � � � � �
L1

B � d � � � 	 �
L2

B � d � � � 	 �
L3

B � d � � �

Given the shape of the path, it is best to use cylindrical coordinates. B is already
expressed in cylindrical coordinates, and we need to choose d � � � in cylindrical
coordinates:

d � � � � r̂ dr 	 φ̂φφr dφ 	 ẑ dz 
Along path L1, dφ � 0 and dz � 0. Hence, d � � � � r̂ dr and

�
L1

B � d � � � � � r � 3

r � 0

�
r̂ cosφ 	 φ̂φφsinφ � � r̂ dr ����

φ � 90 �� � 3

r � 0
cosφ dr ����

φ � 90 �

� r cos φ � 3r � 0 ���
φ � 90 �

� 0 
Along L2, dr � dz � 0. Hence, d � � � � φ̂φφr dφ and

�
L2

B � d � � � � � 180 �

φ � 90 �

�
r̂ cosφ 	 φ̂φφsinφ � � φ̂φφr dφ ���

r � 3� � 3cos φ � 180 �
90 � � 3 

Along L3, dz � 0 and dφ � 0. Hence, d � � � � r̂ dr and
�

L3

B � d � � � � � 0

r � 3

�
r̂ cosφ 	 φ̂φφsinφ � � r̂ dr ���

φ � 180 �� � 0

r � 3
cosφ dr � φ � 180 � � � r � 03 � 3 

Hence,
�

�
C

B � d � � � � 0 	 3 	 3 � 6 
(b)

∇ � B � ẑ
1
r

�
∂
∂r

�
rBφ � ∂Br

∂φ 
 

� ẑ

1
r

�
∂
∂r

�
r sin φ � � ∂

∂φ
�
cos φ � 


� ẑ
1
r

�
sinφ 	 sinφ ��� ẑ

2
r

sin φ 
�

S

�
∇ � B ��� ds � � 3

r � 0

� 180 �

φ � 90 �

�
ẑ

2
r

sinφ 
 � ẑr dr dφ

� � 2r � 3r � 0 cosφ ���
180 �

φ � 90 �
� 6 
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Hence, Stokes’s theorem is verified.

Problem 3.56 Find the Laplacian of the following scalar functions:

(a) V1 � 10r3 sin2φ

(b) V2 � �
2 � R2 � cos θsin φ

Solution:
(a)

∇2V1 � 1
r

∂
∂r

�
r

∂V1

∂r 
 	 1
r2

∂2V1

∂φ2 	 ∂2V
∂z2

� 1
r

∂
∂r

�
r

∂
∂r

�
10r3 sin2φ � 
 	 1

r2

∂2

∂φ2

�
10r3 sin2φ � 	 0

� 1
r

∂
∂r

�
30r3 sin2φ � � 1

r2

�
10r3 � 4sin 2φ� 90r sin 2φ � 40r sin 2φ � 50r sin 2φ 

(b)

∇2V2 � 1
R2

∂
∂R

�
R2 ∂V2

∂R 
 	 1
R2 sinθ

∂
∂θ

�
sinθ

∂V2

∂θ 
 	 1

R2 sin2 θ
∂2V2

∂φ2

� 1
R2

∂
∂R

�
R2 ∂

∂R

�
2

R2 cosθsin φ 
 

	 1

R2 sinθ
∂

∂θ

�
sinθ

∂
∂θ

�
2

R2 cosθsinφ 
 

	 1

R2 sin2 θ
∂2

∂φ2

�
2

R2 cos θsinφ 

� 4

R4 cos θsinφ � 4
R4 cos θsinφ � 2

R4

cosθ
sin2 θ

sin φ

� � 2
R4

cosθsin φ
sin2 θ






