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Chapter 3: Vector Analysis

Lesson #14
Chapter — Section: 3-1
Topics: Basic laws of vector algebra

Highlights:
e Vector magnitude, direction, unit vector
e Position and distance vectors
e Vector addition and multiplication
- Dot product
- Vector product
- Triple product

Special Illustrations:
e CD-ROM Module 3.2

Module 3.2 Two Intersecting Vectors

(Given: Vectors A and B both lie in the
-z plane and they have the same
magnitude of 2.

Q1. What is the value of the dot
product of A and B?
Choose one answer.

A "_SE|EEtj" A * B = 346

2 (‘select ) A-B=2
(seect) A-B=1.73

Q2. What is the cross product of A and
B?

x Choose one answer.

(eec) AXB=21.73

(‘select ) AxB=x346

'r_select_\' A X .B = -ii' 2

3004 2
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Lessons #15 and 16
Chapter — Section: 3-2
Topics: Coordinate systems

Highlights:

e Commonly used coordinate systems: Cartesian, cylindrical, spherical
e Choice is based on which one best suits problem geometry
e Differential surface vectors and differential volumes

Special Illustrations:

e Examples 3-3 to 3-5
e Technology Brief on “GPS” (CD-ROM)

Global Positioning System

The Global Positioning System (GPS),

initially developed in the 1980s by the U.S.
Department of Defense as a navigation tool for
military use, has evolved into a system with
numerous civilian applications including vehicle
tracking, aircraft navigation, map displays in
automobiles, and topographic mapping. The
overall GPS is composed of 3 segments. The
space segment consists of 24 satellites (A), each
circling Earth every 12 hours at an orbital
altitude of about 12,000 miles and transmitting
continuous coded time signals. The user segment
consists of hand-held or vehicle-mounted
receivers that determine their own locations by
receiving and processing multiple satellite
signals. The third segment is a network of five
ground stations, distributed around the world,

. . . . A. GPS nominal satellite constellation
that monitor the satellites and provide them with 4 Babelile=in sach Plane

. : o . 20,200 krn Altitudes, 58 Degres Inalinat
updates on their precise orbital information. B s e

GPS provides a location inaccuracy of about 30
m, both horizontally and vertically, but it

can be improved to within 1 m by

differential GPS (see illustration).
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Lesson #17
Chapter — Section: 3-3

Topics: Coordinate transformations

Highlights:

e Basic logic for decomposing a vector in one coordinate system into the coordinate
variables of another system

e Transformation relations (Table 3-2)

Special Illustrations:

e Example 3-8
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Lesson #18
Chapter — Section: 3-4

Topics: Gradient operator

Highlights:
e Derivation of V T in Cartesian coordinates

e Directional derivative
e VT in cylindrical and spherical coordinates

Special Illustrations:

e Example 3-10(b)
e (CD-ROM Modules 3.5 or 3.6
e (CD-ROM Demos 3.1-3.9 (any 2)

Demo 3.6: Gradient of Scalar Fields

4

y Given: A scalar field defined by:

T =1+sin(2mx/6)  for — 10 < x < 10.

The field T is displayed graphically in the figure, wherein the brightness of the
image at a given location is proportional to the magnitude of T at that location.

(oispiay ) the graphical and analytical solution for VT
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Lesson #19
Chapter — Section: 3-5
Topics: Divergence operator

Highlights:

e Concept of “flux”
e Derivation of V.E
e Divergence theorem

Special Illustrations:

e (CD-ROM Modules 3.7-3.11 (any 2)
e (CD-ROM Demos 3.10-3.15 (any 1 or 2)

Demo 3.14: Divergence of Vector Fields

4

10{Y Given: A vector field defined by:
I R S I . 0< r< 10 and
'\ li T } : 1 T f /‘ A =fr4prcosd for{qu)%Zn:
\ V1o 1t / / The vector A is displayed graphically in
\ oo | A / / the figure, wherein vectors are used to
‘\0"‘ R PPN, depict the direction and magnitude of A
-1 LN S B 10 at any given location.
R e e b w e —
—a— ,(’ + \_. Ty, T
SN T ‘biseiay ) the graphical and analytical
10 solution for V * A
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Lesson #20
Chapter — Section: 3-6
Topics: Curl operator

Highlights:
e Concept of “circulation’

e Derivation of VX B
e Stokes’s theorem

b

Special Illustrations:

e Example 3-12



Lesson #21
Chapter — Section: 3-7
Topics: Laplacian operator

Highlights:
e Definition of V>V
e Definition of V> E

Special Illustrations:

113

e Technology Brief on “X-Ray Computed Tomography”

X-Ray Computed Tomography

Tomography is derived from the Greek words
tome, meaning section or slice, and graphia,
meaning writing. Computed tomography, also
known as CT scan or CAT scan (for computed
axial tomography), refers to a technique
capable of generating 3-D images of the x-ray
attenuation (absorption) properties of an
object. This is in contrast with the traditional
x-ray technique which produces only a 2-D
profile of the object. CT was invented in 1972
by British electrical engineer Godfrey
Hounsfield, and independently by Allan
Cormack, a South African-born American
physicist. The two inventors shared the 1979
Nobel Prize for Physiology or Medicine.
Among diagnostic imaging techniques, CT has
the decided advantage in having the sensitivity
to image body parts on a wide range of
densities, from soft tissue to blood vessels and
bones.

A. CT Scanner

COMPUTER
AND CHITOR

xm*rsnumg/_. - \
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Chapter 3

Section 3-1: Vector Algebra

Problem 3.1 Vector A starts at point (1,—1,—3) and ends at point (2,—1,0). Find
a unit vector in the direction of A.

Solution:

A=R(2—-1)+§(—=1—(=1)) +2(0— (=3)) = K+ 23,

A = VIF9=23.16,
. A R+33 .
_ A — %0.32+20.95.
A=A T 31e  oete

Problem 3.2 Givenvectors A=%X2—9y3+7, B=%X2—y+23,and C =%4+Yy2—72,
show that C is perpendicular to both A and B.

Solution:

Problem 3.3 In Cartesian coordinates, the three corners of a triangle are P1(0,4,4),
Po(4,—4,4), and P3(2,2,—4). Find the area of the triangle.

Solution: LetB= Pﬁz =X4—y8and C = Pﬁg = X2—§2— 28 represent two sides of

the triangle. Since the magnitude of the cross product is the area of the parallelogram

(see the definition of cross product in Section 3-1.4), half of this is the area of the

triangle:
A=3|BxC|=3|(X4—98) x (X2 — 92 —28)|

(—8)(—8) + ¥(—(4)(=8)) +2(4(-2) — (-8)2)|

%64 + 932+ 28| = 31/642 + 322+ 82 = 11/5184 = 36,

where the cross product is evaluated with Eq. (3.27).

I
Nl Nl ik

x>

Problem 3.4 Given A=%X2—y3+21and B = XBx+ Y2+ ZB;:
(a) find By and B, if A is parallel to B;
(b) find a relation between By and B, if A is perpendicular to B.



CHAPTER 3 115

Solution:
(a) If A is parallel to B, then their directions are equal or opposite: 4, = +ag, or

A/IA|=+B/|B],
R2—93+2 _ , KBx+92+12B;

V14 \/A+BZ2+BZ’

From the y-component,
-3 +2
V14 \/A+BZ+B2

which can only be solved for the minus sign (which means that A and B must point
in opposite directions for them to be parallel). Solving for B2 4 B2,

2 2 20
B2+ B2 = (—3\/ﬁ> —4=

From the x-component,

2 —By B _ —2v/56 _ —4
v1a /569’ T 3y1a 3
and, from the z-component,
-2
B,= —.
tT3

This is consistent with our result for B2+ B2.

These results could also have been obtained by assuming 6 was 0° or 180° and
solving |A||B| = £A- B, or by solving A x B=0.

(b) If A is perpendicular to B, then their dot product is zero (see Section 3-1.4).
Using Eq. (3.17),

0=A-B=2By—6+B;,,
or
BZZG—ZB)(.

There are an infinite number of vectors which could be B and be perpendicular to A,
but their x- and z-components must satisfy this relation.

This result could have also been obtained by assuming 6a5 = 90° and calculating
|Al[B] = |AxB].

Problem 3.5 Given vectors A= X+§2—23, B=X2—y4, and C = y2 — 74, find
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(@) Aand 3,

(b) the component of B along C,
(¢) Bac,

(d) AxC,

(e) A-(BxC),

(f) Ax(BxC),

(9) Xx B, and

(h) (Ax9)-2.

Solution:
(a) From Eq. (3.4),

A=1/124+22 4 (—3)* = V14,

and, from Eq. (3.5),

ap— X+92—123 .
V14
(b) The component of B along C (see Section 3-1.4) is given by
B-C -8
BcosBgc = < - \/ﬁ =-1.8.
(c) From Eq. (3.21),
AC 4412 .

Bpc =COS™ T ——— =17.0°.

16
— COS =C0S ~——
AC v 14+/20 280

(d) From Eq. (3.27),
A x C=K(2(—4) — (=3)2) + ¥((—=3)0— 1(—4)) + 2(1(2) — 2(0)) = —X2 + Y4 + 22.
(e) From Eq. (3.27) and Eq. (3.17),
A-(BxC)=A-(X16+98+24) = 1(16) + 2(8) + (—3)4 = 20.

Eg. (3.30) could also have been used in the solution. Also, Eq. (3.29) could be used
in conjunction with the result of part (d).
(f) By repeated application of Eq. (3.27),

Ax (BxC)=Ax (X16+ §8+24) = X32 — §52 — 224.

Eq. (3.33) could also have been used.
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(9) From Eq. (3.27),

Xx B=-24.

(h) From Eqg. (3.27) and Eq. (3.17),
(AxVY)-2=(X34+2)-2=1.

Eq. (3.29) and Eq. (3.25) could also have been used in the solution.

Problem 3.6 Given vectors A =X2—9+23 and B = X3— 22, find a vector C whose
magnitude is 9 and whose direction is perpendicular to both A and B.

Solution: The cross product of two vectors produces a new vector which is
perpendicular to both of the original vectors. Two vectors exist which have a
magnitude of 9 and are orthogonal to both A and B: one which is 9 units long in
the direction of the unit vector parallel to A x B, and one in the opposite direction.

AxB (32— 9+123) x (X3 22)
C=49— - =49
AxB|  |(R2—9+23)x (8_22)|
21913423
— 49 N EYIOH LS L (R1.344 §8.67+22.0).

V224132432

Problem 3.7 Given A = X(x+2y) —Y(y+ 3z) + 2(3x—Yy), determine a unit vector
parallel to A at point P(1,—1,2).

Solution: The unit vector parallel to A = X(x+2y) —y(y+3z) +2(3x—vy) at the

point P(1,—1,2) is

@8’:1’2;' Xyl X _\/VEJF 2 e 80.15—§0.77+20.62.
Sl E T A

Problem 3.8 By expansion in Cartesian coordinates, prove:
(a) the relation for the scalar triple product given by (3.29), and
(b) the relation for the vector triple product given by (3.33).

Solution:
(a) Proof of the scalar triple product given by Eq. (3.29): From Eg. (3.27),

A x B =X(AyB, — A;By) + Y(A;Byx — AB;) + Z(ABy — AyBy),
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B x C = X(ByC; —B,Cy) +¥(B,Cx — BxC;) + Z(B«Cy — By,Cy),
C X A - ;((CyAz - Csz) + y(CzAX - CxAz) + 2(CxAy - CyAx).

Employing Eq. (3.17), it is easily shown that

A- (B x C) = Ay(ByC; — B,Cy) + Ay(B,Cx — BxC;) + Az(BxCy — ByCy),

B (C x A) = By(CyA; —C,Ay) + By (C,Ax — CxA;) + B, (CxAy — CyAy),

C - (A X B) = Cx(AyBZ —_— Asz) +Cy(Asz —_— Asz) +C2(AxBy - AyBx),
which are all the same.

(b) Proof of the vector triple product given by Eq. (3.33): The evaluation of the left
hand side employs the expression above for B x C with Eq. (3.27):

— )A((Ay(Bny - Bny) - Az(BzCX - Bxcz))
+Y(A:(B,C; — B,.Cy) — Ax(B«Cy — ByCy))
+ 2(Ax(BCx — BxC;) — Ay(ByC; — B,Cy)),
while the right hand side, evaluated with the aid of Eq. (3.17), is
+9(By(AxCx +A,C;) —Cy(AxBx +A;B;))

By rearranging the expressions for the components, the left hand side is equal to the
right hand side.

Problem 3.9 Find an expression for the unit vector directed toward the origin from
an arbitrary point on the line described by x =1 and z = 2.

Solution: An arbitrary point on the given line is (1,y,2). The vector from this point
to (0,0,0) is:

A=X0-1)+9(0—-y)+2(0—-2) =X -y —22,

Al=V1+y2+4=1/5+y2,
LA —K-gy-22

Al /Bry?
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Problem 3.10 Find an expression for the unit vector directed toward the point P
located on the z-axis at a height h above the x-y plane from an arbitrary point
Q(x,y,—3) in the plane z = —3.

Solution: Point P is at (0,0,h). Vector A from Q(x,y, —3) to P(0,0,h) is:

A=R(0-xX) +9(0—y) +2(h+3) = —%x— Yy + 2(h+3),
Al =[P +y?+ (h+3)7Y/2,
A —Rx—9y+2(h+3)

a= Al T 2+y2+ (h+3)q2°

Problem 3.11 Find a unit vector parallel to either direction of the line described by

2X+z=4.

Solution: First, we find any two points on the given line. Since the line equation
is not a function of y, the given line is in a plane parallel to the x-z plane. For
convenience, we choose the x-z plane withy = 0.

Forx =0, z=4. Hence, point P is at (0,0, 4).

Forz=0, x=2. Hence, point Q is at (2,0,0).

Vector A from P to Q is:

A=%(2—0)+§(0—0)+2(0—4) =%2— 24,
L A _%-4
Al Va0 e

Problem 3.12 Two lines in the x-y plane are described by the expressions:

Line 1 X+2y =—6,
Line 2 3x+4y =8.

Use vector algebra to find the smaller angle between the lines at their intersection
point.
Solution: Intersection point is found by solving the two equations simultaneously:
—2x—4y =12,
3x+4y = 8.
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735 30 25 20 -15-10 (0' 10 E%:s 20 25 30 35
10+ A
154+
Ve
20+ f
254 /4 AB
304

Figure P3.12: Lines 1 and 2.

The sum gives x = 20, which, when used in the first equation, gives y = —13.
Hence, intersection point is (20, —13).
Another point on line 1 is x =0, y= —3. Vector A from (0,—3) to (20,—13) is

A = %(20) + §(—13 4 3) = %20 — 10,
|A| = v/202 + 102 = v/500.
Apointon line 2isx =0, y=2. Vector B from (0,2) to (20,—13) is
B = X(20) + §(—13 —2) = X20 — y15,
|B| = v/20? + 152 = v/625.

Angle between A and B is
A-B 400 + 150
Opg = cos 1 (—) =cos~ ! (7> —10.3°.
AB A[[B] /500 /625

Problem 3.13 A given line is described by

X+ 2y =4.

\ector A starts at the origin and ends at point P on the line such that A is orthogonal
to the line. Find an expression for A.
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Solution: We first plot the given line. Next we find vector B which connects point
P1(0,2) to P,(4,0), both of which are on the line:

B=X(4-0)+9(0—2) =%4—92.
\ector A starts at the origin and ends on the line at P. If the x-coordinate of P is x,

y

\

P02

P49

(0,0) \

Figure P3.13: Given line and vector A.

then its y-coordinate has to be (4 —x)/2 in order to be on the line. Hence P is at
(X, (4—x)/2). Vector A is
oo ofbd—
A=XX+Vy <TX> .

But A is perpendicular to the line. Hence,
A-B=0,
N A
[xx+y(Tx>] -(X4—-92) =0,

4x—(4—x)=0, or

4
=—-=0.8.
X=3
Hence,
4-0.8
A:20.8+§/( > )220.8+§/1.6.

Problem 3.14 Show that, given two vectors A and B,
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(a) the vector C defined as the vector component of B in the direction of A is given

by

c-ae-a) - 20,

where & is the unit vector of A, and
(b) the vector D defined as the vector component of B perpendicular to A is given

by
A(B-A)

D=B-
A2

Solution:
(a) By definition, B - a is the component of B along a. The vector component of

(B-a) along A is

C=a(B-8)= o (B A):A(B‘A)

DA A AR

(b) The figure shows vectors A, B, and C, where C is the projection of B along A.
It is clear from the triangle that

B=C+D,
o A(B-A)
D=B-C=B-— :
|A|2
A
C
D
B

Figure P3.14: Relationships between vectors A, B, C, and D.
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Problem 3.15 A certain plane is described by

2x+ 3y +4z = 16.
Find the unit vector normal to the surface in the direction away from the origin.
Solution: Procedure:

1. Use the equation for the given plane to find three points, P1, P, and P3 on the
plane.

2. Find vector A from P4 to P, and vector B from P, to Ps.

3. Cross product of A and B gives a vector C orthogonal to A and B, and hence
to the plane.

4. Check direction of ¢.

Steps:
1. Choose the following three points:
P]_ at (0,0,4),
P, at (8,0,0)
Psat (0,%,0).

bl

2. Vector A from P, to P,
A=%X(8-0)+y(0—0)+2(0—4)=%8-124
Vector B from P; to P

B=x(0-0)+9 (£ -0) +2(0-4) =9 2 - 24

C=AxB
R (AyB; — A;By) + ¥ (A;By — AB,) + 2 (ABy — AyBy)
X (o-(—4) —(—4)- %6> +9((—4)-0—8-(—4))+2 (8- %6 —0-0)

64 128
493245
3 +Yy32+2 3

Il
)
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Verify that C is orthogonal to A and B

64 128 512 512
AC=(82) 43200+ (2. (—4)) =22_22_p
(:5) + 2o+ (B 0) = 52-5

64 16 128 512 512
BC= (0'?>+(32'?)+(T'(_4)) =3 3¢

e & 493247128 . . .
b - X5y 3 —0.374§0.56+20.74.

Ve e ()

¢ points away from the origin as desired.

Problem 3.16 Given B =X(z—3y) +¥(2x—3z) — Z(x+Y), find a unit vector parallel
to B at point P(1,0,—1).

Solution: AtP(1,0,—1),

Problem 3.17 When sketching or demonstrating the spatial variation of a vector
field, we often use arrows, as in Fig. 3-25 (P3.17), wherein the length of the arrow
is made to be proportional to the strength of the field and the direction of the arrow
is the same as that of the field’s. The sketch shown in Fig. P3.17, which represents
the vector field E = fr, consists of arrows pointing radially away from the origin and
their lengths increase linearly in proportion to their distance away from the origin.
Using this arrow representation, sketch each of the following vector fields:

(@) Ex=—%y,

(b) E2=yx,

() Ez=%Xx+yy,

(d) E4=xXx+9y2y,

(e) Es=gr,

(f) Eg =Trsing.
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<

X

Figure P3.17: Arrow representation for vector field E = fr (Problem 3.17).

Solution:

(@)

E . . E

D D -~ D
- - -~ -~
R - -~ -~ R -~
- - - - - - - -
) X
— — — — — — — —
— — — — — —
—_ —_ —_ —_
_— _— _— _—

> >

E " E

P2.13a E;=-XY
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(b)

P3.17b: E;

(©

N N
= XX+yy

P2.13c: E,
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(d)

(€)
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)

P2.13f: Eg= f sing

Problem 3.18 Use arrows to sketch each of the following vector fields:
(@) E1=%x—Yy,
(b) Ex=—9,
(c) Ea=Y3,
(d) E4=Tcosq

Solution:



N,

- a0 —p ——p ——p X
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(©
y
4y X
AE
x \
;iiiiuvvvvv: H¥$1it y
H XAAAAAH
Yy 1
v Y "x x Indicates |E| isinfinite
P2.14c: E;= y (1/X)
(d)
y
\E fE
< N Ao
N /:/' g
—E>—> —\\l‘ —_— X
-7
S
A NN
e/ N xg
/ \
AE \E

P2.14d:E,= /r\cosq)




CHAPTER 3 131

Sections 3-2 and 3-3: Coordinate Systems

Problem 3.19 Convert the coordinates of the following points from Cartesian to
cylindrical and spherical coordinates:

(a) P1(1,2,0),

(b) P2(05052)1

(C) P3(17173)'

(d) P4(—2,2,-2).

Solution: Use the “coordinate variables” column in Table 3-2.
() In the cylindrical coordinate system,

P. = (v12+ 22,tan 1 (2/1),0) = (v/5,1.107 rad, 0) ~ (2.24,63.4°,0).

In the spherical coordinate system,

P; = (V12422402 tan~(1/12422/0),tan"1(2/1))
= (v/5,11/2 rad, 1.107 rad) ~ (2.24,90.0°,63.4°).

Note that in both the cylindrical and spherical coordinates, @is in Quadrant I.
(b) In the cylindrical coordinate system,

P, = (/024 02,tan 1(0/0),2) = (0,0 rad,2) = (0,0°,2).
In the spherical coordinate system,

P, = (v/024 02+ 22 tan~1 (1/02 4+ 02/2),tan~1(0/0))
= (2,0 rad,0 rad) = (2,0°,0°).

Note that in both the cylindrical and spherical coordinates, @ is arbitrary and may
take any value.
(c) In the cylindrical coordinate system,

P3= (V124 12,tan"1(1/1),3) = (v/2,m/4 rad,3) ~ (1.41,45.0°,3).
In the spherical coordinate system,

P = (V12412432 tan" 1 (1/12 4+ 12/3), tan"1(1/1))
= (v/11,0.44 rad, /4 rad) ~ (3.32,25.2°,45.0°).

Note that in both the cylindrical and spherical coordinates, @is in Quadrant I.
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(d) In the cylindrical coordinate system,

Py=(\/(—2)*+22tan"1(2/ — 2),—2)

= (2v/2,31/4 rad, —2) ~ (2.83,135.0°, —2).

In the spherical coordinate system,

Py= (\/(—2)2+22+ (—=2)% tan~ 1 (y/(—2)%+ 22/ —2),tan"1 (2/ — 2))
= (2V/3,2.187 rad, 31/4 rad) ~ (3.46,125.3°,135.0°).

Note that in both the cylindrical and spherical coordinates, @is in Quadrant I1.

Problem 3.20 Convert the coordinates of the following points from cylindrical to
Cartesian coordinates:

(@) Pi(2,1/4,-2),

(b) P2(3,0,—-2),

(c) Ps(4,m3).
Solution:

(@)
. m,_ . T
P1(x,y,2) = Pi(rcos@,rsing,z) = Py (2cos Z,Zsm Z,—Z) =P;(1.41,1.41,-2).

(b) Pa(x,y,2) = P2(3c0s0,3sin0, —2) = P(3,0,—2).
(c) P3(x,y,z) = P3(4cosm4sinT, 3) = P3(—4,0,3).

Problem 3.21 Convert the coordinates of the following points from spherical to
cylindrical coordinates:

(a) P1(5,0,0),
(b) P2(5,0,m),
(c) P5(3,11/2,0).
Solution:
@)
Pi(r,@ z) = P1(RsinB,@,Rcos0) = P1(5sin0,0,5c0s0)
= P4(0,0,5).

(b) Pa(r,@,z) = Po(5sin0,1,5c050) = P,(0,115).
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(€) Ps(r,@.2) = Ps(3sinJ,0,3c0s ) = P5(3,0,0).

Problem 3.22 Use the appropriate expression for the differential surface area ds to
determine the area of each of the following surfaces:

@ r=3 0<e<1/3; —2<2<2,

(b) 2<r<5; W2<@<m z=0,

() 2<r<5; p=1/4; —2<12<2,

(d R=2;0<06<T1/3;, 0< <™

() 0<KR<5 6=1/3;, 0<@<2m
Also sketch the outlines of each of the surfaces.

Solution:
y A
5 2
(b) (©)
(d) (e

Figure P3.22: Surfaces described by Problem 3.22.

(a) Using Eq. (3.43a),
2 /3 3 2
A= [ Dlsdedz= (EeS)[_,=an
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(b) Using Eg. (3.43c),

5 ,m m 21m
_ — ((Lr20)° el
A= [, Olododr= (GrolL,)|, ="

(c) Using Eq. (3.43b),

A= [ ] @lemadraz= ()2 )

(d) Using Eg. (3.50b),

5
=12.
r=2

/3 3 _
/(p:O R?sin®)[._,dpdd = (( 4¢cos )| )‘(p: =21

(e) Using Eq. (3.50c¢),

B 102, i 1[ 21
A_/R O/ (Rsin6)|g_ry3d@dR = ((2R (psm3)‘(p:0)

Problem 3.23  Find the volumes described by
(@ 2<r<5 m/2<e<m 0<2<2,
(b) 0<KR<5 0<0<T/3; 0< <21
Also sketch the outline of each volume.

V4 V4
_._ 5
2
/ > 5 y é‘y
()

@

> 25/3m
R=0 2 .

Solution:

X

Figure P3.23: Volumes described by Problem 3.23 .

(a) From Eq. (3.44),

V:/Zio/q:n/z/:zrdrd(pdz:<(( (pz)| )

Tt
=17 2)
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(b) From Eq. (3.50e),
2n /3 5
V= / R2sinBdRdOdo
9=0J6=0 JR=0
T[/3 21
1251

RS\ °
( (— oS G?(p>

R=0> 8=0

Problem 3.24 A section of a sphere is described by 0 <R <2, 0 <6< 90°, and
30° < @< 90°. Find:
(a) the surface area of the spherical section,

(b) the enclosed volume.
Also sketch the outline of the section.

Solution:

z

i S

' ~s

Vi A3

‘Q

] \‘

(]

.
: N
3 -
[] ’ y
.
’

] ’O

I .

1 ’

] ,"

X -
@=30° /I

Figure P3.24: Outline of section.
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/2 /2
S= R2sin@8dBd@lr—2
@=1/6/6=0
o (T [ coso™2] —ax T4 (2
_4(2 6)[ cos 8|, ]_4x3_ (m?),
2 /2 /2
vz/ / R2sinBdRdOdo
R=0J ¢=1/6/6=0
R32/m m w2, 8T 8m
= —| (z—=)[-cosBly =775 =— (md).
3 0(2 6) 0 33

Problem 3.25 A vector field is given in cylindrical coordinates by
E = frcos @+ @rsin@+ 222,

Point P(2, Tt 3) is located on the surface of the cylinder described by r = 2. At point P,
find:

(a) the vector component of E perpendicular to the cylinder,

(b) the vector component of E tangential to the cylinder.

Solution:
(@ En=7(f-E)="1[f- (?rCOS(p+&Jrsin @+ 22%)] = frcos@.
AtP(2,13), E,=f2cosTt= —f2.
(b) E;=E—En=@rsing+ 2z2.
At P(2,1,3), E; = @2sinTi+ 232 = 9.

Problem 3.26 At a given point in space, vectors A and B are given in spherical
coordinates by
A=R4+02—q
B=—R2+¢3.
Find:
(a) the scalar component, or projection, of B in the direction of A,

(b) the vector component of B in the direction of A,
(c) the vector component of B perpendicular to A.

Solution:
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(a) Scalar component of B in direction of A:

A A o~ (RA+62—0)
C=B-a=B-— =(—R24+@3) - ———"
A ( %) V16+4+1
—8-3 11
= =— =-2.4.
V21 V21
(b) Vector component of B in direction of A:
5 C o anian o (=24)
C=a8C=A—=(R4+02—
A=l O

= —(R2.09+61.05—0.52).

(c) Vector component of B perpendicular to A:

D=B-C=(—R2+q3)+ (R2.09+81.05—0.52)

—R0.09+61.05+(2.48.
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Problem 3.27 Given vectors
A = t(cos @+ 3z) — @(2r + 4sin ) + 2(r — 22),
B = —fsin@+Zcosq,

find

(@) Oap at (2,11/2,0),
(b) aunit vector perpendicular to both A and B at (2,11/3,1).

Solution: It doesn’t matter whether the vectors are evaluated before vector products
are calculated, or if the vector products are directly calculated and the general results

are evaluated at the specific point in question.
(@) At (2,1/2,0), A= —@+22 and B = —F. From Eq. (3.21),

A-B 0
Bpg = COs * (ﬁ) =cos ! (E) =90°.

(b) At (2,1/3,1), A=t —@4(1+ 3v/3) and B= —#1v/3+21. Since Ax B is
perpendicular to both A and B, a unit vector perpendicular to both A and B is given

by

AxB _ | F(=4(1+3v9)(3) —9()(3) —2(4(1+3VB3)(3v3)

[AxB|

~ F(70.487 + 0.228 + 70.843).

VA3V + (D)2 + B +2v3)
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Problem 3.28 Find the distance between the following pairs of points:
(@) P1(1,2,3) and Po(—2,—3,—2) in Cartesian coordinates,
(b) Ps(1,11/4,3) and P4(3,11/4,4) in cylindrical coordinates,
(c) Ps(4,11/2,0) and Pg(3,11,0) in spherical coordinates.

Solution:

(a)
d=[(—2—1)2+(—3—2)2+ (—2—3)% 2 = [9+ 25+ 25)%/2 = \/59 = 7.68.
(b)

d = [r34r? —2rirpcos(@ — @) + (2o — 21) 32
= [9+1-2x3x1xcos(7— 1) +(4-3)7
=(10-6+1)Y2=5Y2=224.

©
d = {R3 + RZ — 2R1R,[c0s B, C0s B; + Sin B 5in B, O — 1 )]} /2
= {9+ 16—-2x3x4 [cosncongrsin gsinncos(O— 0)] }1/2
= {9+16—0}2=y/25=5.

Problem 3.29 Determine the distance between the following pairs of points:
(@ P1(1,1,2) and P,(0,2,3),
(b) P3(2,11/3,1) and P4(4,11/2,3),
(c) Ps(3,1,11/2) and Ps(4,11/2,11).

Solution:
(a) From Eq. (3.66),

d= \/(0—1)2+(2—1)2+(3—2)2:\/§.

(b) From Eqg. (3.67),

d= \/22+42—2(2)(4) cos (g— g) +(3—-1)>=1/24—8V3~3.18.




CHAPTER 3 139

(c) From Eq. (3.68),

Tt Tt T
— (32442 = inTIsin — —)) =
d= \/3 +42—-2(3)(4) (cos 5 COS TT+ SiNTtSin 5 COS (T[ )) 5.

Problem 3.30 Transform the following vectors into cylindrical coordinates and
then evaluate them at the indicated points:

(@ A=X(x+y) atPi(1,2,3),

(b) B==X(y—x)+¥(x—y) atPs(1,0,2),

(©) C=%y?/(x*+y%) —9x?/(x®+y?) + 24 at P3(1,-1,2),

(d) D= Rsm9+6cose+(pc032(p at P4(2,1/2,11/4),

(e) E = Rcos@+ Osin@+@sin6 at Ps(3,71/2, ).

Solution: From Table 3-2:

(@)
A = (fcos@— @sin@)(rcos @+ rsing)
= Frcos @(cos @+ sin@) — (brsin(p(coscp+sin<p),
Py = (v/12+22,tan 1(2/1),3) = (v/5,63.4°,3),
A(Py) = (F0.447 — ©0.894)/5 (.447 +.894) = 71.34 — 92.68.
(b)

B = ( cos @— @sin @) (rsin @— rcos @) + (9cos e+ sin @) (r cos e— rsing)
= Pr(2sincos @— 1) + @r(cos? — sin?@) = Fr(sin2¢— 1) -+ @r cos 2q,
P, = (/124 02,tan 1(0/1),2) = (1,0°,2),
B(P,) = —T+@

(©)

~ 2¢in2 ~ 2 5
C = (Poosg—sing)- Srlg ®_ (@cosg+sing) 5 2424

— Psingcos (sin p— cos @) — @(sin® -+ cos® @) + 24,
Ps=(\/12+ (-1) tan"1(~1/1),2) = (V/2,—-45°,2),
C(Ps) = 70.707 + 24.
(d)
D = (#sinB-+ 2cos 6) sin B+ (F cos 6 — 2sin B) cos B+ Pcos® @ = ¥ + Pcos? ,
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Py= (23 r1( T/2),1y/4,2¢08 (1/2)) = (2,45°,0),
D(Pa) =F+

(€
E = (FsinB+ 2cosB) cos @+ (#cos8 — 25sin B) sin @+ @sin?e,
Tt
P5:(37§7 )a
— (tsin 45005 " Poos N 5sin V) sinTit @sin? X = 4 q
E(P5)_(rsm2+zcosz)cosn+(rc032 25|n2)smn+(psm 5= r+o.

Problem 3.31 Transform the following vectors into spherical coordinates and then
evaluate them at the indicated points:
(@) A=Ry?>+9xz+24 atPy(1,-1,2),
(b) B=9(+y?+7%) —2(x*+Yy?) at P»(—1,0,2),
(c) C=rtcos@—@sinp+2zcos@sing at P3(2,1/4,2), and
(d) D =8y?/(x®+y?) —9x%/ (x> +y?) + 24 at P4y(1,—1,2).
Solution: From Table 3-2:
(@)
— (RsinBcos g+ Bcos B cos p— @sin @) (RsinBsing)?
+ (RsinBsin @+ Bcos Bsin @+ pcos @) (Rsin Bcos @) (Rcos H)
+ (Rcos® —Bsin6)4
= R(R?sin?Bsin @cos ¢(sin Bsin ¢+ cos 6) + 4cos 6)
+68(R?sinBcos Osin gcos ((sin Bsin @+ cos6) — 4sinB)
+(pR sin®(cos 8cos? p—sinBsin® @),

P = (\/12+(—1)2+22,tan_1( 12+(—1)2/2) ,tan_l(—l/l))
— (v/6,35.3°,—45°),
A(Py) ~ R2.856 — 02.888 + ¢2.123.

(b)

(RsinBsin @+ BcosBsin @+ @cos )R? — (Rcos B — BsinB)R?sin?6
:IA? R?sin B(sin g— sinBcos 6) + BR?(cos Bsin @+ sin6) -+ PR?cos @,

Po= (Vcvt+one 2zt (/o 072) -t 0/(-1)

= (v/5,26.6°,180°),
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B(P;) ~ —R0.896 +60.449 — ¢5.

(©
C = (Rsin B+ 8cos 6) cos p— @sin @+ (RcosB — BsinB) cos gsin @
= Rcos @(sin 4 cos Bsin @) -+ Bcos @(cos 6 — sinBsin ) — @sin g,
Py = (V224 2%, tan"* (2/2),1/4) = (2V/2,45°,45°),
C(Ps) ~ R0.854 +80.146 — 0.707.
(d)

R2sin?0sin @
R2sin?0sin® @+ R2sin®0cos2 @

R2sin®0cos2 @
R2sin?@sin® @+ R2sin0cos2 @

D = (Rsin Bcos @+ B¢cosO.cos p— @sin (0)

— (RsinBsin @+ Bcos Osin -+ Pcos )

+ (RcosB—Bsin6)4

= R(sinBcos @sin? @— sinBsin gcos? @+ 4cosh)
+6(cosBcos @sin® g— cos Bsin pcos? p— 4sin )
— @(cos® @+sin® @),

Pa(1,—1,2) = Py [\/1+ 114,tan Y(viT 1/2),tan’l(—1/1)]
= P4(/6,35.26°, —45°),

D(P4) = R(sin35.26° cos45° sin?45° — sin35.26° sin(—45°) cos?45° + 4.c0s35.26°)
+6(c0s35.26° 05 45° 5in45° — c05 35.26° sin(—45°) c0s? 45° — 45in 35.26°)
— @(cos®45° + sin®45°)
=R3.67—01.73 — ¢0.707.

Sections 3-4 to 3-7: Gradient, Divergence, and Curl Operators

Problem 3.32  Find the gradient of the following scalar functions:
(@) T=3/(*+2),
(b) V = xy?z%,
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(€) U =zcosq@/(1+r?),
(d) W =eRsin8,

(e) S=4x2e2+y3,

() N =r?cos?q,

(g) M =RcosBsinq.

Solution:
(a) From Eq. (3.72),

A 6X . 6z
OT = —X > —2 5 -
(@+29)° (422

(b) From Eq. (3.72),
OV = Ry?z* + §2xyz* + 24xy?z>.
(c) From Eq. (3.82),

L2rzcos@ -~ zsin@ . COSQ

U = —¢ —~ :
(1+7r2)? YA e

(d) From Eqg. (3.83),
OW = —Re Rsin8+8(e R/R)cosb.

(e) From Eq. (3.72),

S=4x%e 2 +y3
0S 0S 0S
OS=X— +§— +2— = x8xe~ 2+ y3y* — 24x%eZ.
0x Y oy + 0z Yoy

(f) From Eq. (3.82),

2 nne2
N = r<cos“q,

.ON ~10N _ON Al
ON=F=C+Q- - +2-= F2r cos? p— @2r sin (cos .

or r oQ 0
(9) From Eq. (3.83),
M = Rcos8sin¢,
_AOM 210M ~ 1 OM . : A Aok ~ COS (@
OM = Ra—R +6E ¥ —|—(pm 0 Rcosesmcp—esmesmcp—k(pm.
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Problem 3.33 The gradient of a scalar function T is given by
OT =2¢ %

IfT =10atz =0, find T(z).

Solution:
OT = 2e~ %,

By choosing P; at z =0 and P, at any point z, (3.76) becomes

/DT dl = / e~ . (XdX' + §dy’ +2dZ')

37 |*
' —e
:/ e ¥d = —
0 3

1—e & :10+1 1—e™ %),
3

Hence,

Problem 3.34 Follow a procedure similar to that leading to Eq. (3.82) to derive the
expression given by Eq. (3.83) for [ in spherical coordinates.

Solution: From the chain rule and Table 3-2,

aT L 0T aT

Ol =X +V5y 2%,
4 0T dR aT 00 4 oT 09
OR 9x 69 ox 0@ 0x

<>

OTIR T30 3T g
(OR ay a8 6y+6<p6y>
GTOR 9T 30 T dg
<6R oz 98 az+6(paz)

m%a_tan (VL) + St 0/

N)

!
/—\
(o8
5| S
2|

—

T 0 oT

/Xy 2 212 90 Y tan?
(aRa X2 +y2+z +aea tan~t (v/x2 +y2/2) + 0 0 tan (y/x))
T 0 N oT >

2\ R VX2 y2 422 +a—a— L(Vx2+y2/2) +——tan Yy/x)
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—(

(3]

T X aT X aT -y
\/x2+y2+22 a9><2+y2+22\/x2+y2 09 X2 +y?

<)

oR

LTz y 0T x

x2+y2+22 a9><2+y2+22\/x2+y2 0Q X2 +y?
aT

/x2 vz o

( X2+y2+22 69X2+y2+22 Xy 0)

a_T sinBcosq 0T Rcos6 Rsmecoscp+ 0T —RsinBsin@

oR R 90 RZ2  Rsind 09 R2sin’0

(aT Rsmesm(p 0T RcosORsinBsing AT Rschoscp)

A

69 R2 Rsin® Jracp R2sin%0
aTRcose aT Rsme)

dR R R2

4 (aR sinBcos o+ O aT cosBcosqp 0T —smcp)

00 R T 0@ RsinB
+9 a—Tsmesm + —

0T cos@sing 4T cos@
00 R acp Rsin®

43 aTcose-l-aT —sin@
R M R

= (XsinBcos @+ ysinBsin @+ ZcosH) g;

+ (XcosBcos @+ §cosOsin@— 2sinB) é g(Ta
oT

Rsin® dg
—éa_T_Fela_T_F(pA ! a_T
OR  "RAO TRsinBIgp’

which is Eq. (3.83).

+ (—Xsin@+ ycos @)

Problem 3.35 For the scalar function V = xy? — z?, determine its directional

derivative along the direction of vector A= (X—9z) and then evaluate it at
P(1,—1,4).

Solution: The directional derivative is given by Eq. (3.75) asdV /dl =[OV - &, where
the unit vector in the direction of A is given by Eqg. (3.2):

X—Vyz

Vit+22’

a =
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and the gradient of V in Cartesian coordinates is given by Eq. (3.72):

[V = Ry? + §2xy — 22z.
Therefore, by Eq. (3.75),

v y*—2xyz
dl V1422
AtP(1,-1,4),
dV) 9
— = —=2.18.
(0” (1-14 V17

Problem 3.36 For the scalar function T = %e—r/E’coscp, determine its directional
derivative along the radial direction ¥ and then evaluate it at P(2,11/4,3).

Solution:
T= %e‘r/f’coscp,
0T ~10T 0T e "/5cosp ~ePsing
OT =r— - — —_— = —
or +q)r a(p+zaz TV ¢ 2r
dT . e "/5cos
F T TR
e=2/5cos I
dT _ S T Pa . a74x10°2
a2 mag) 10

Problem 3.37 For the scalar function U = £sin?@, determine its directional
derivative along the range direction R and then evaluate it at P(5,11/4,11/2).

Solution:
U= %sinze,
U :ﬁg_l;‘ké%g_:Jr(bﬁg% :_ﬁsi?;e_éZsinicose,
%—LIJ:DU-F“e:—SigZe,
du __sin’(1/4)

habetl — = —0.02.
dl |5, ry/4m/2) 25
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Problem 3.38 Vector field E is characterized by the following properties: (a) E
points along R, (b) the magnitude of E is a function of only the distance from the
origin, (c) E vanishes at the origin, and (d) O-E = 12, everywhere. Find an expression
for E that satisfies these properties.

Solution: According to properties (a) and (b), E must have the form

E = RER
where Eg is a function of R only.
10
0-E=— — (R?ER) =12
reor (R ER) =12

% (R%ER) = 12R?,

/Ri(R2E )dR—/R12R2dR
o OR T o ’

12R3 R
RZEng = )
3 0
R%Eg = 4RS.
Hence,
Er = 4R,
and
E = R4R.

Problem 3.39 For the vector field E = Xxz — §yz2 — 2xy, verify the divergence
theorem by computing:

(a) the total outward flux flowing through the surface of a cube centered at the
origin and with sides equal to 2 units each and parallel to the Cartesian axes,
and

(b) the integral of (- E over the cube’s volume.

Solution:
(a) For a cube, the closed surface integral has 6 sides:

7£ E - ds = Frop + Foottom + Fright + Feft + Front + Foack;



CHAPTER 3 147

1 1
Frop = /X.—l/Y—l ()A(XZ a 9}/22 - 2Xy) |z:1' (zdydx)

1 1 22\ |1 1
—/ / xydydx = (ﬂ) =0,
x=—1Jy=—1 4 y=1/)|,__4
1 T, i
Foottom = / / (% —9yz* —2xy)|,_ ,-(—2dydx)
x=—1Jy=—-1
1 1 22\ (1 1
= / / xydydx = (ﬂ) =0,
=—1Jy=—1 4 y=1/)|,__4
Fright —/ / (fxz —yz —zxy)| - (§dzdx)
=—1J=21
3 —
——/ / 22dzdx = — (£> :—4,
=—1J1=-1 3 /)= .
Reft = / / (&xz — 9yz® — 2xy) | ,__ ydzdx)
=—1Jz=—1 y=
3 —
——/ / 22dzdx = — (£> :—4,
=—1Jz=—1 3 )l . 3
Front = / / XXZ — yyz — ny) | (Xdzdy)
“1Jz=1

=0,

L e () i_l)

= [ [ a9y 20)],_ (~xdzay)

(G|

—4 —4 —8
%E-ds_0+0+?+?+0+0—?.

=0,
-1
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(b)

1o 1
// D-Edv:/ / / O-(%xz — §yz% — 2xy) dzdy dx
x=—1Jy=-1Jz=-1
1o
:/ / / (z—1z%) dzdydx
x=—1Jy=-1J7=-1

(G- =

Problem 3.40 For the vector field E = f10e~" — 23z, verify the divergence theorem
for the cylindrical region enclosed by r=2, z=0, and z = 4.

Solution:

2 21
7.éE-ols:/ / (P10 —232) - (—2rdrdg)) |, ,
r=0J¢=0 -

4
/ ((f10e™" —232) - (frdedz))|,_,
z=0 -
n / / (106"~ 232) - (2rdrdg)) |,
r= O -

21
=0+ 10e 22d(pdz+/ / —12rdrdg
=0 =0

— 160TR 2 — 48TT~ —82.77,

// D.Edq/:/z;/r 0/ <10e—r - 3>rd(pdrdz

2
= 8n/ (10e~"(1—r)—3r)dr

r=0
2

3 2
=8m (—10e_r +10e~"(1+47r) — %)

r=0
— 160TE % — 48Tt~ —82.77.

Problem 3.41 A vector field D = fr2 exists in the region between two concentric
cylindrical surfaces defined by r = 1 and r = 2, with both cylinders extending
between z = 0 and z = 5. Verify the divergence theorem by evaluating:

@) féD-ds,
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(b) /q/D-Dde.

Solution:

(@
/ D - ds = Finner + Fouter + Foottom + Ftops
mne,_/ /zo Pré) - (—frdzde))|,_,
/Z , (—r*dzdg)|,_, = —10m,
Fouter_/ / ((7rd) - (frdzde)) | _,
z=0
/ (r*dzdg)|,_, = 160m,
Fbottom—/r / (—2rdedr))|,_, =0,
Fmp:/r 1/ ) (zrdedr))|,_s=0.

Therefore, [/D-ds= 150t
(b) From the back cover, 0-D = (1/r)(8/ar)(rr®) = 4r2. Therefore,

5 2n 2 2n 5
. _ 2 _ 42
// 0-Ddv /zzo/q):o r:l4r rdrdedz (((r )\r:1> (p:())

=0
Problem 3.42 For the vector field D = R3R2, evaluate both sides of the divergence
theorem for the region enclosed between the spherical shells defined by R = 1 and
R=2.

Solution: The divergence theorem is given by Eq. (3.98). Evaluating the left hand

side:
2 2 2 ai
/DDde / /GO/R 1(R26R (R2(3R )))R sinBdRdBdo

— 2m(—cos8)|%_ (3RY)|>_, = 180T

= 1501t




150 CHAPTER 3

The right hand side evaluates to

7£D ds = (/ /eo RR25|n6d9d(p))
</ N O (R3R?). (RR23|n6d9dcp))

= —2TT 3sin6d9+2n 48sin0d6 = 180Tt
8=0 8=0

R=1

R=2

Problem 3.43  For the vector field E = &xy — §(x? + 2y?), calculate
@ 7£ E - dl around the triangular contour shown in Fig. P3.43(a), and
C

(b) /(D x E) - ds over the area of the triangle.
s

Solution: In addition to the independent condition that z = 0, the three lines of the
triangle are represented by the equations y = 0, x =1, and y = X, respectively.

b o

(b)

Figure P3.43: Contours for (a) Problem 3.43 and (b) Problem 3.44.

()
jéE"“ =Li+La+Ls,
L1=/(>‘<xy—>7(><2+2y2))-(>‘<dx+ydy+2dz)

1 0 0
2 o2
:/X:O (Xy)|y:o’z:0d)(—/y;0 (x*+2y )|Z:0dy+/2:0 (0)]y—odz =0,
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Lz=/(>‘<xy—>7(x2+2y2))-(>‘<dx+ydy+2dz)

1 1
:~/x:1 (XY)|Z:0dX—/: (X +2y )‘x 1z= 0dy+/ |x 1

_ 23\ |*
=0 (1+%)

y=0
L3=/(>‘<xy—>7(x2+2y2))-(>‘<dx+ydy+2dz)

0 0
= [ 0 ot [+, gty [ Ol
2

X= —
%3\ |°
:(3> 3

Therefore,

-5
0=—
+ 3

0
- (y3) ‘y:l—i_o =

x=1

5 2
E-dl=0—-+=-=-1.
7£ 313

(b) From Eq. (3.105), OxE = —23x, so that

//DXE ds_/ / —23x) - (zdydx))|,_o
x=0.Jy=0

X
=— 3xdydx=— [ 3x(x—0)dx Y-
/xOyoxyX / XX ) (X)‘O

Problem 3.44 Repeat Problem 3.43 for the contour shown in Fig. P3.43(b).
Solution: In addition to the independent condition that z = 0, the three lines of the
triangle are represented by the equations y = 0, y = 2 —x, and y = X, respectively.

(@)
7£E-d|:L1—I—L2—I—L3,

L1=/(*XV—V(X2+2y2))-(>“<dx+ydy+2dz)
2 0
:/x:o 09)ly-02-0 0% - y=0 (X +2y%) [, ody+/ 0)ly—odz =0,

Lo= /(ﬁxy—il(xz+2y2)) - (Rdx+ 9 dy +2dz)
1

1
= - (XY)|20,y2_de—‘/y:0 (X + 2y )|x 2—yz= 0dy+/ |y oy dz

1

—11
— (4y—2y? +y)| Lot 0=—5",
X=2
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= [ (Rxy—9(x®+2y?)) - (Rdx+§dy +2dz)
0 0

=/ (V) [y z—0 dX — /y: (x+2y%)|,_ Ly Ody+/ 0)ly—y d
x3 2

- (3) )bato=3

Therefore,

2
E-dl=0- 2 42= 3
f it

(b) From Eq. (3.105), OxE = —23x, so that

//DxE-ds:/xiO/y:O((—23x)-(2dydx))|Z:0

+/i1/y: ((~23%) - (2dyd¥))],_q

1 X 2 2—x
:—/ 3xdydx—/ / 3xdydx
x=0Jy=0 x=1Jy=0

1 2
:—/X:O3x(x—0)dx—/X l3x((2—x)—0)dx
=~ (F)|o— (B[, =3

Problem 3.45 Vferify Stokes’s theorem for the vector field B = (¥rcos @+ (i)sin [0)
by evaluating:

@ 74 B - dl over the semicircular contour shown in Fig. P3.46(a), and
C

(b) /(D x B) - ds over the surface of the semicircle.
S

Solution'

7£B di= [ Bodit [ Bedlt [ Bod,
Ly Lo

B-dl= (rrcoscp+(psm o) - (rdr+(prd(p+2dz) =rcos@dr+rsinede,

2 0
B-dl= (/ rcoscpdr) + (/ rsincpdcp)
Ly r=0 =0, z=0 =0

- ()o0-2

=0
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y

2 L 2 L
ARWEN
g g X O—p 75—~
@) (b)
Figure P3.46: Contour paths for (a) Problem 3.45 and (b) Problem 3.46.

r=2, z=0

2 s
B-dl= (/ rcoscpdr) + (/ rsin(pd(p)
Lo r=2 7—0 ¢=0

=04 (—2c0s Q) |0 = 4,
0 T
B-dl= / rcoscpdr) +</ rsin(pd(p)
L3 r=2 @=mz=0 =Tt
= (-3) | +0=2

jéB-dI:2—|—4+2:8.

=0

(b)
OxB = Ox(frcos @+ @sing)

(10 0, . ~ (0 0
_r<Fa—(pO—a—Z(sm(p)>+(p<a—z(rcoscp)—go)

+2% (%(r(sin 9)— %(rcoscp))

= P04 §0+ 27 (sing+ (rsing)) = 2sin(p(1+ %) ,

//DxB-ds:/q:O/:o (2sincp(1-|—%>> -(Zrdrdeg)

:/(pzo/riosin(p(rJrl)drd(P: ((~cosa3r+1)[,)

s
=8.
=0

Problem 3.46 Repeat Problem 3.45 for the contour shown in Fig. P3.46(b).

Solution:
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(@)
%B«ﬂ: BdL+/[}dH— B-dl+ [ B-dI,
L1 Lo L3 L4
B-dI:(l“’rcoscp+fpsin(p)-(fdr+fprd(p+2dz) =rcos@dr+rsin@de,
2 0
B-dl= (/ rcoscpdr) + (/ rsin(pd(p)
L1 r=1 @=0, z=0 ¢=0 z=0
1.2\ 2 3
= (3r)[j, +0= 2
T/
B-dl= ( rcoscpdr) + (/ rsin(pdcp)
L2 7=0 ¢=0 r=2, z=0
=0+ (—2c0sq) [ =2,
/2
B-dl= ( rcoscpdr) + (/ rsin(pd(p) =0,
Ls o=1/2, z=0 ¢=T7/2 =0
0
B-dl= ( rcoscpdr) + (/ rsincpdcp)
La 7=0 ¢=T1/2 r=1, z=0
=0+ (- COS(p)|(p:T[/2: -1
3 5
%B@L_§+2+0—1_§.
(b)
OxB = Ox (frcos @+ @sing)
10 0 0 0
= (Fa—(pO—a—(mn(p)) (p( (rcoscp)—a—o)

//DXB ds

CHAPTER 3

+2% ( 9 (r(sing@)) — %(rcoscp))

}_\

= r0+¢0-|—zF(smcp-|- (rsing)) = 2sin(p(1+ %) ,

o) o

/2
/ sing(r+1)drde
r=1

+1)) ‘5:1)

/2

5

= ((—cosq)(ir >

=0
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Problem 3.47 Verify Stokes’s Theorem for the vector field A = R cose+(bsin 0 by
evaluating it on the hemisphere of unit radius.

Solution: A A A
A = Rcos 0+ @sin 8 = RAR + 0Ag + @A,

Hence, Ar =c0s6, Ag =0, Ap=siné.

L1 0 -
DXA—RW <£(A¢,Sln9)) -0
; 10

- A 10
=Resn098 (sin?@) — 6—aR (Rsin®) — Ea—e(cose)
_§2cose_ésin9+Asin9
B R R ’ R

For the hemispherical surface, ds = RRZsin8d0da.

/2
/ / (OxA)-
6=

2 (R2c0SO AsinB ~sinB\ - 2 .
/ /e ( ~67 o7 )-RR sinBdOde
/2

R=1
sin%0

= 2TL
R=1

0

The contour C is the circle in the x—y plane bounding the hemispherical surface.

o=ry2 = 21

2n 2n
jéA dl = / (RcosB+@sin®) - R do|g_ H/Z_Rsme/ do|

Problem 3.48 Determine if each of the following vector fields is solenoidal,
conservative, or both:

(@) A=Xx>—9y2xy,

(b) B = %x%—9y?+ 22z,

(©) C=t(sing)/r2+@(cosq)/r?,

(d) D=R/R,

) E=T(3— %) +1

() F=&y+9x)/(x*+y?),

(@) G=R(C+2%) —9(y* +x°) —2(y*+2°),
(h) H=R(R e—R).
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Solution:

(@)

O-A = O-(%x% — §2xy) = %xz — (%2xy —2Xx—2x =0,

OxA = Ox (%x% — §2xy)
YA o} (0 5 0 [0 0, 5
_X(ayo az( 2xy))+y(az(x) axo>+z(0x( 2xy) ay(x))
=X0+90—2(2y) #0.

The field A is solenoidal but not conservative.

(b)

a d a
O0B=0-(XC—§y2+227) = —X°— — V2 4+ — 27 =2Xx—2y+2#£0
("~ Yy”+222) = = ay.\/+azz X—2y+2#0,

OxB = Ox (%% — Jy? + 222)

=X (;—y(ZZ) - %(—ﬁ) +9 (%(Xz) - :—X(Zz)) +2 <:—x(—y2) - %(x2)>

= X0+ Y0+ 20.
The field B is conservative but not solenoidal.
(©
.SIN@ ~CcosQ
0.c=0- (I"T +¢T)

10 sing 10 /cosg 0

=_— — —— | == —0
ror (r( r2 >)+r6(p( r2 >+az
—sing —sing —2sin@

:r3—i—r3—|—0: B3

r2

(10 0 [cos@ ~(0d (sing 0

- (Fapt-2 (7)) ol (F°) -a0)
1[0 cos@ d [sing

(3 0(5) (%)

PO S | cosQ cosQ _ ,—2C0sQ

—r0+q)0+zF(—< 2 )—( 2 ))—z 3

The field C is neither solenoidal nor conservative.

OxC = 0Ox (f‘%p—k(p—woscp)
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o [(RY 10 [,(1 1 9, . 1 o0, 1
Ob=0 (ﬁ) “RZR (R (E)) T Rsin6 a8 "0+ BB o’ ~ RE”

=R——s (ai(OSin 6) — a%o) +é% (ﬁa% (%) — a%(R(o))>
+{p% (%(R(o))_ % (%)) — 70+ 60 + ¢0.

The field D is conservative but not solenoidal.

(e)

" r ~
E:r<3——)+zz,
1+r

19 10E, OE,
DE= o B+ 50 T o

2r r2
P L S
[ 1+r+(1+r)2]+
34+3r24+6r—2r—2r2+r2 2r2 4+ 4r+3
+3r24+6r—2r—2r2+r 1:r+r++1#0’
(1+47r)2 r(1+4r)2

= 1 aEZ aE(p ~ aEr aEZ ~ 1 a 1 aEr _
DXE_r(FanE)+"’<E‘W)“(FE“E“’)_FT¢) =0

Hence, E is conservative, but not solenoidal.

)

CRy+Yx oy .
Ty gy T gy

0 y 0 X
=g ()t (i)

—2Xy —2xy

- (X2 +y2)2 + (x2+y2)2 70,
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. X To X 0 y
DXF_X(0—0)+Y(0—0)+Z[& (m) oy <m>]

5 1 ¥ 1 N 2y?
X2+y2 (X2 +y2)2 X2 +y2 (X2+y2)2

5 2(y> —x%)

“oaryz

Hence, F is neither solenoidal nor conservative.

(9)
= R(X* +2%) = 9(y* +X%) — 2(y? + 22),

G
0-G

222_22 2_322
x X )5, X — 5, 747

=2X—2y—27#0,

_A_izzﬂzzAﬂzzizz
DxG_x( ay(y +z)+az(y +x°) ) +9 az(x +Z)+6X(y +79)

5 0 2 2 0 2 2
+2 (=g 624 = 5 04
= —X2y+9y2z—22x #0.

Hence, G is neither solenoidal nor conservative.

(h)
H=R(Re™™),
Dwﬂziniﬂﬁ€ﬁ:>£@W€ﬂ—R%4)ZERB—R)#O
R2 9R R2 ’
OxH=0.

Hence, H is conservative, but not solenoidal.

Problem 3.49 Find the Laplacian of the following scalar functions:
(@) V = 4xy?z3,
(b) V =xy+yz+zx,
(©) V =3/(¢+y?),
(d) V =5e""cosq,
(e) V = 10e Rsin®.

Solution:
(a) From Eq. (3.110), 0?(4xy?z%) = 8xz° + 24xy?z.
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(b) O?(xy+yz+2x) =0.
(c) From the inside back cover of the book,

g (%) =0%@r?) =12r= Lz :
Xty (X +y?)

(d)
02(5e ™" cos@) = 5" cosp( 1 — 1_1).
rr?

(€)

2\  cos?B—sin?0
2(106—R cin @) — 100—R [ <i _£)  cosTu—siny
[04(10e™"sinB) = 10e (sme (1 R) + R2SinG ) .

Problem 3.50 Find a vector G whose magnitude is 4 and whose direction is
perpendicular to both vectors E and F, where E=X+y2—Z72and F =§3—76.

Solution: The cross product of two vectors produces a third vector which is
perpendicular to both of the original vectors. Two vectors exist that satisfy the stated
conditions, one along E x F and another along the opposite direction. Hence,

ExF (R+92—22) x (y3—26)
G=44 — +4 5 A
|Ex F| |(X +y2 22) x (y3—126)]
—:l:4( X6+96+23)
B V3643649

4 o o . 8 .8 .4
—4+_ (—R6+ — (%2492 435-).
9( X6+96+123) ( x3+y3+23)

Problem 3.51 A given line is described by the equation:
y=x—1.

Vector A starts at point P1(0,2) and ends at point P, on the line such that A is
orthogonal to the line. Find an expression for A.

Solution: We first plot the given line.
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AN

3 (01 '1)

Next we find a vector B which connects point P3(0, 1) to point P4(1,0), both of which
are on the line. Hence,

B=X(1—0)+§(0+1) =%+7.

Vector A starts at P;1(0,2) and ends on the line at P,. If the x-coordinate of P is x,
then its y-coordinate has to be y = x — 1, per the equation for the line. Thus, P, is at
(x,x—1), and vector A is

A=X(x—0)4+9(x—1—-2) =KXx+9(x—3).

Since A is orthogonal to B,

A-B=0,
[Rx+9 (x—3)]-(X+9) =0
X+x—3=0

N W

X =

Finally,

A=Xx+§(x—3)

Il
PoS)

Il
P
NlwWw N W
| +
<> <>
Nloo/-\
- N w
|
w
N——
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Problem 3.52 Vector field E is given by
E=R 5Rcose—él—R2 sinBcos @+ @3sin @.

Determine the component of E tangential to the spherical surface R = 2 at point
P(2,30°,60°).

Solution: At P, E is given by
- ~12 . AL
E=R5x2c0s30° — 97 sin30° cos60° + @3sin 60°
—R8.67—01.5+q2.6.

The R component is normal to the spherical surface while the other two are tangential.
Hence, A A
Ei = —01.5+@2.6.

Problem 3.53 Transform the vector
A = Rsin?0cos ¢+ 0 cos?o— @sing
into cylindrical coordinates and then evaluate it at P(2,1/2,11/2).
Solution: From Table 3-2,
A = (f sin@+ 2c0s8) sinBcos @+ ( cos® — 2sin 6) cos? p— @sin @
= 7 (sin®Bcos g+ cos Bcos? @) — @sin P+ 2 (cos Bsin?Ocos ¢— sinOcos? @)

AtP(2,1/2,11/2),
A=—Q.

Problem 3.54 Evaluate the line integral of E = Xx — §y along the segment P; to P,
of the circular path shown in the figure.

P, (0, 3)

P, (-3,0)
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Solution: We need to calculate:

P2
E-de.
P1
Since the path is along the perimeter of a circle, it is best to use cylindrical
coordinates, which requires expressing both E and d€ in cylindrical coordinates.
Using Table 3-2,

P cos p— @sin )r cos @ — (¥ sin @+ Pcos P)rsin @
r(cos? @— sin? @) — g2r sin cos @

The designated path is along the @-direction at a constant r = 3. From Table 3-1, the
applicable component of d# is:

E=%Xx—9yy

de = @r do.
Hence,

P2 ¢=180° ~ ~
/ E-df= [f’r(cosch— sin @) — @2rsin (pcoscp] -Qr d(p‘ ,
Py r=

@=90°
8
= —2r?sin@cos pdq|,_,
o0 =
sin? ™
— —2r2 T — 9
¢=90],—_3

Problem 3.55 \Verify Stokes’s theorem for the vector field B = (T cos @+ (])sin ®) by
evaluating:

(@ 74 B - d£ over the path comprising a quarter section of a circle, as shown in the
c
figure, and

(b) /(D x B) -ds over the surface of the quarter section.
§
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Solution:

(@)

%B-dé:/ B-de+/ B-de+ [ B-de
C Ly Lo L3

Given the shape of the path, it is best to use cylindrical coordinates. B is already
expressed in cylindrical coordinates, and we need to choose d€ in cylindrical
coordinates:

dé = dr+qrdo+2dz

Along path Ly, dp=0and dz=0. Hence, dé = dr and

r=3 R
/B-dﬁ:/ (F cos@+@sing) -t dr
Ly r=0

3
= / cosqdr
r=0 ¢=90°

Along Ly, dr =dz =0. Hence, d¢ = &)r depand

@=90°

3
= rcosq|;_ ‘ =0.
(p|r70 =90°

180° N ~
/ B-dé:/ (fcoscp+tpsincp)-cprdcp‘
Lo @=90° r=3

= —3cos@lay =3.

Along L3, dz=0and dp=0. Hence, d¢ =t dr and

0 ~
B-dez/ f cos sing) - dr
/L 3 r:3( @+ @sing) \(p:lsoo

0
= /r_3 cos@dr|,_qg0 = —rl3=3.
Hence,
%B-de:0+3+3=6.
C

1/0 0B,

(ar (=-5))
(—(rsin(p)—i(cosqa)>
or 0

i ) A2 .
(sin@+sing) = stm(p.

3 180 / 9
/(DxB)-ds:/ / (2—sin(p>-2rdrd(p
S r=0.J@=90° r

= —orf? qJl O =6
= r Cos ‘ =0.
|r_0 90°

(b)

[
X
o
I
N>
oY

I
N>

I
N>
sl sk =]
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Hence, Stokes’s theorem is verified.

Problem 3.56 Find the Laplacian of the following scalar functions:
(@) Vi =10r3sin2¢
(b) V2 = (2/R?)cosBsing

Solution:
@)
10 ((24), 10%
ror 2 o@ ' 922
19/ 0 1 02 3.
=3 (ra—(10r sm2(p)> + —2W(10r sin2¢) +0
10 3. 3,
= FE(%r sin2¢) — ﬁ(lor )4sin2¢@
= 90rsin 2¢p— 40r sin 2¢p = 50r sin 2.
(b)
10 oV, 1 0 oV 1 0,
0V, = = — (R?=2 = (sin6=2 ) + ==
2= R29R ( 6R> + RZsin6 00 ( N85 )  R2sin?6 0@
d

1 20 (2
= RZ3R (R R (R2 cosesmcp))
+71 i nE)i 2 cos0sin
RZsin6 20 FEAGE ¢

+— ! o (2 cos@sin )
R2sin2 0 0P ¢

4 . 4 i
= Ra cosfsin@— Ra cosfsin@— —;

cosO .
R*sin%@

sin@

2 cosOsing
R4 sin2e





