Chapter 1: Introduction: Waves and Phasors

Lesson \#1

Chapter - Section: Chapter 1
Topics: EM history and how it relates to other fields

Highlights:

- EM in Classical era: 1000 BC to 1900
- Examples of Modern Era Technology timelines
- Concept of "fields" (gravitational, electric, magnetic)
- Static vs. dynamic fields
- The EM Spectrum

Special Illustrations:

- Timelines from CD-ROM

Timeline for Electromagnetics in the Classical Era

ca. 900 Legend has it that while walking
BC across a field in northern Greece, a shepherd named Magnus experiences a pull on the iron nails in his sandals by the black rock he was standing on. The region was later named Magnesia and the rock became known as magnetite [a form of iron with permanent magnetism].

Magnetic compass used as a navigational device.

1752 Benjamin Franklin (American) invents the lightning rod and demonstrates that lightning is electricity.

1785 Charles-Augustin de Coulomb (French) demonstrates that the electrical force between charges is proportional to the inverse of the square of the distance between them.

Alessandro Volta (Italian) develops the first electric battery.

1820 Hans Christian Oersted (Danish) demonstrates the interconnection between electricity and magnetism through his discovery that an electric current in a wire causes a compass needle to orient itself perpendicular to the wire.

Lessons \#2 and 3

Chapter - Sections: 1-1 to 1-6
Topics: Waves

Highlights:

- Wave properties
- Complex numbers
- Phasors

Special Illustrations:

- CD-ROM Modules 1.1-1.9
- CD-ROM Demos 1.1-1.3

Module 1.6: Red Wave in a Lossy Medium

Q1. What is the wave amplitude?

$$
A=\square \mathrm{V} \quad \text { Check answer } \quad \text { Igive up }
$$

Q2. What is the wave frequency? [Use the digital clock to estimate it]

$$
f=\square \mathrm{Hz} \quad \text { Check answer } \text { Tgive up }
$$

Q3. What is the wavelength?

Chapter 1

Section 1-3: Traveling Waves

Problem 1.1 A 2-kHz sound wave traveling in the x-direction in air was observed to have a differential pressure $p(x, t)=10 \mathrm{~N} / \mathrm{m}^{2}$ at $x=0$ and $t=50 \mu \mathrm{~s}$. If the reference phase of $p(x, t)$ is 36°, find a complete expression for $p(x, t)$. The velocity of sound in air is $330 \mathrm{~m} / \mathrm{s}$.

Solution: The general form is given by Eq. (1.17),

$$
p(x, t)=A \cos \left(\frac{2 \pi t}{T}-\frac{2 \pi x}{\lambda}+\phi_{0}\right),
$$

where it is given that $\phi_{0}=36^{\circ}$. From Eq. (1.26), $T=1 / f=1 /\left(2 \times 10^{3}\right)=0.5 \mathrm{~ms}$. From Eq. (1.27),

$$
\lambda=\frac{u_{\mathrm{p}}}{f}=\frac{330}{2 \times 10^{3}}=0.165 \mathrm{~m} .
$$

Also, since

$$
\begin{aligned}
p(x=0, t=50 \mu \mathrm{~s})=10\left(\mathrm{~N} / \mathrm{m}^{2}\right) & =A \cos \left(\frac{2 \pi \times 50 \times 10^{-6}}{5 \times 10^{-4}}+36^{\circ} \frac{\pi \mathrm{rad}}{180^{\circ}}\right) \\
& =A \cos (1.26 \mathrm{rad})=0.31 A,
\end{aligned}
$$

it follows that $A=10 / 0.31=32.36 \mathrm{~N} / \mathrm{m}^{2}$. So, with t in (s) and x in (m),

$$
\begin{aligned}
p(x, t) & =32.36 \cos \left(2 \pi \times 10^{6} \frac{t}{500}-2 \pi \times 10^{3} \frac{x}{165}+36^{\circ}\right) \quad\left(\mathrm{N} / \mathrm{m}^{2}\right) \\
& =32.36 \cos \left(4 \pi \times 10^{3} t-12.12 \pi x+36^{\circ}\right) \quad\left(\mathrm{N} / \mathrm{m}^{2}\right) .
\end{aligned}
$$

Problem 1.2 For the pressure wave described in Example 1-1, plot
(a) $p(x, t)$ versus x at $t=0$,
(b) $p(x, t)$ versus t at $x=0$.

Be sure to use appropriate scales for x and t so that each of your plots covers at least two cycles.
Solution: Refer to Fig. P1.2(a) and Fig. P1.2(b).

Figure P1.2: (a) Pressure wave as a function of distance at $t=0$ and (b) pressure wave as a function of time at $x=0$.

Problem 1.3 A harmonic wave traveling along a string is generated by an oscillator that completes 180 vibrations per minute. If it is observed that a given crest, or maximum, travels 300 cm in 10 s , what is the wavelength?

Solution:

$$
\begin{aligned}
f & =\frac{180}{60}=3 \mathrm{~Hz} \\
u_{\mathrm{p}} & =\frac{300 \mathrm{~cm}}{10 \mathrm{~s}}=0.3 \mathrm{~m} / \mathrm{s} . \\
\lambda & =\frac{u_{\mathrm{p}}}{f}=\frac{0.3}{3}=0.1 \mathrm{~m}=10 \mathrm{~cm} .
\end{aligned}
$$

Problem 1.4 Two waves, $y_{1}(t)$ and $y_{2}(t)$, have identical amplitudes and oscillate at the same frequency, but $y_{2}(t)$ leads $y_{1}(t)$ by a phase angle of 60°. If

$$
y_{1}(t)=4 \cos \left(2 \pi \times 10^{3} t\right),
$$

write down the expression appropriate for $y_{2}(t)$ and plot both functions over the time span from 0 to 2 ms .

Solution:

$$
y_{2}(t)=4 \cos \left(2 \pi \times 10^{3} t+60^{\circ}\right) .
$$

Figure P1.4: Plots of $y_{1}(t)$ and $y_{2}(t)$.

Problem 1.5 The height of an ocean wave is described by the function

$$
y(x, t)=1.5 \sin (0.5 t-0.6 x) \quad(m)
$$

Determine the phase velocity and the wavelength and then sketch $y(x, t)$ at $t=2 \mathrm{~s}$ over the range from $x=0$ to $x=2 \lambda$.

Solution: The given wave may be rewritten as a cosine function:

$$
y(x, t)=1.5 \cos (0.5 t-0.6 x-\pi / 2)
$$

By comparison of this wave with Eq. (1.32),

$$
y(x, t)=A \cos \left(\omega t-\beta x+\phi_{0}\right)
$$

we deduce that

$$
\begin{array}{rlrl}
\omega & =2 \pi f=0.5 \mathrm{rad} / \mathrm{s}, & \beta=\frac{2 \pi}{\lambda}=0.6 \mathrm{rad} / \mathrm{m} \\
u_{\mathrm{p}}=\frac{\omega}{\beta}=\frac{0.5}{0.6}=0.83 \mathrm{~m} / \mathrm{s}, & \lambda=\frac{2 \pi}{\beta}=\frac{2 \pi}{0.6}=10.47 \mathrm{~m}
\end{array}
$$

Figure P1.5: Plot of $y(x, 2)$ versus x.

At $t=2 \mathrm{~s}, y(x, 2)=1.5 \sin (1-0.6 x)(\mathrm{m})$, with the argument of the cosine function given in radians. Plot is shown in Fig. P1.5.

Problem 1.6 A wave traveling along a string in the $+x$-direction is given by

$$
y_{1}(x, t)=A \cos (\omega t-\beta x),
$$

where $x=0$ is the end of the string, which is tied rigidly to a wall, as shown in Fig. 1-21 (P1.6). When wave $y_{1}(x, t)$ arrives at the wall, a reflected wave $y_{2}(x, t)$ is generated. Hence, at any location on the string, the vertical displacement y_{s} will be the sum of the incident and reflected waves:

$$
y_{\mathrm{s}}(x, t)=y_{1}(x, t)+y_{2}(x, t) .
$$

(a) Write down an expression for $y_{2}(x, t)$, keeping in mind its direction of travel and the fact that the end of the string cannot move.
(b) Generate plots of $y_{1}(x, t), y_{2}(x, t)$ and $y_{\mathrm{s}}(x, t)$ versus x over the range $-2 \lambda \leq x \leq 0$ at $\omega t=\pi / 4$ and at $\omega t=\pi / 2$.

Solution:

(a) Since wave $y_{2}(x, t)$ was caused by wave $y_{1}(x, t)$, the two waves must have the same angular frequency ω, and since $y_{2}(x, t)$ is traveling on the same string as $y_{1}(x, t)$,

Figure P1.6: Wave on a string tied to a wall at $x=0$ (Problem 1.6).
the two waves must have the same phase constant β. Hence, with its direction being in the negative x-direction, $y_{2}(x, t)$ is given by the general form

$$
\begin{equation*}
y_{2}(x, t)=B \cos \left(\omega t+\beta x+\phi_{0}\right), \tag{1}
\end{equation*}
$$

where B and ϕ_{0} are yet-to-be-determined constants. The total displacement is

$$
y_{\mathrm{s}}(x, t)=y_{1}(x, t)+y_{2}(x, t)=A \cos (\omega t-\beta x)+B \cos \left(\omega t+\beta x+\phi_{0}\right) .
$$

Since the string cannot move at $x=0$, the point at which it is attached to the wall, $y_{\mathrm{s}}(0, t)=0$ for all t. Thus,

$$
\begin{equation*}
y_{s}(0, t)=A \cos \omega t+B \cos \left(\omega t+\phi_{0}\right)=0 . \tag{2}
\end{equation*}
$$

(i) Easy Solution: The physics of the problem suggests that a possible solution for (2) is $B=-A$ and $\phi_{0}=0$, in which case we have

$$
\begin{equation*}
y_{2}(x, t)=-A \cos (\omega t+\beta x) . \tag{3}
\end{equation*}
$$

(ii) Rigorous Solution: By expanding the second term in (2), we have

$$
A \cos \omega t+B\left(\cos \omega t \cos \phi_{0}-\sin \omega t \sin \phi_{0}\right)=0
$$

or

$$
\begin{equation*}
\left(A+B \cos \phi_{0}\right) \cos \omega t-\left(B \sin \phi_{0}\right) \sin \omega t=0 . \tag{4}
\end{equation*}
$$

This equation has to be satisfied for all values of t. At $t=0$, it gives

$$
\begin{equation*}
A+B \cos \phi_{0}=0, \tag{5}
\end{equation*}
$$

and at $\omega t=\pi / 2$, (4) gives

$$
\begin{equation*}
B \sin \phi_{0}=0 . \tag{6}
\end{equation*}
$$

Equations (5) and (6) can be satisfied simultaneously only if

$$
\begin{equation*}
A=B=0 \tag{7}
\end{equation*}
$$

or

$$
\begin{equation*}
A=-B \quad \text { and } \quad \phi_{0}=0 . \tag{8}
\end{equation*}
$$

Clearly (7) is not an acceptable solution because it means that $y_{1}(x, t)=0$, which is contrary to the statement of the problem. The solution given by (8) leads to (3).
(b) At $\omega t=\pi / 4$,

$$
\begin{aligned}
& y_{1}(x, t)=A \cos (\pi / 4-\beta x)=A \cos \left(\frac{\pi}{4}-\frac{2 \pi x}{\lambda}\right) \\
& y_{2}(x, t)=-A \cos (\omega t+\beta x)=-A \cos \left(\frac{\pi}{4}+\frac{2 \pi x}{\lambda}\right) .
\end{aligned}
$$

Plots of y_{1}, y_{2}, and y_{3} are shown in Fig. P1.6(b).

$$
\omega \mathrm{t}=\pi / 4
$$

Figure P1.6: (b) Plots of y_{1}, y_{2}, and y_{S} versus x at $\omega t=\pi / 4$.
At $\omega t=\pi / 2$,

$$
y_{1}(x, t)=A \cos (\pi / 2-\beta x)=A \sin \beta x=A \sin \frac{2 \pi x}{\lambda}
$$

$$
y_{2}(x, t)=-A \cos (\pi / 2+\beta x)=A \sin \beta x=A \sin \frac{2 \pi x}{\lambda} .
$$

Plots of y_{1}, y_{2}, and y_{3} are shown in Fig. P1.6(c).

$$
\omega \mathrm{t}=\pi / 2
$$

Figure P1.6: (c) Plots of y_{1}, y_{2}, and y_{s} versus x at $\omega t=\pi / 2$.

Problem 1.7 Two waves on a string are given by the following functions:

$$
\begin{aligned}
& y_{1}(x, t)=4 \cos (20 t-30 x) \quad(\mathrm{cm}) \\
& y_{2}(x, t)=-4 \cos (20 t+30 x) \quad(\mathrm{cm})
\end{aligned}
$$

where x is in centimeters. The waves are said to interfere constructively when their superposition $\left|y_{\mathrm{s}}\right|=\left|y_{1}+y_{2}\right|$ is a maximum and they interfere destructively when $\left|y_{\mathrm{s}}\right|$ is a minimum.
(a) What are the directions of propagation of waves $y_{1}(x, t)$ and $y_{2}(x, t)$?
(b) At $t=(\pi / 50) \mathrm{s}$, at what location x do the two waves interfere constructively, and what is the corresponding value of $\left|y_{\mathrm{s}}\right|$?
(c) At $t=(\pi / 50) \mathrm{s}$, at what location x do the two waves interfere destructively, and what is the corresponding value of $\left|y_{\mathrm{s}}\right|$?

Solution:

(a) $y_{1}(x, t)$ is traveling in positive x-direction. $y_{2}(x, t)$ is traveling in negative x-direction.
(b) At $t=(\pi / 50) \mathrm{s}, y_{s}=y_{1}+y_{2}=4[\cos (0.4 \pi-30 x)-\cos (0.4 \pi+3 x)]$. Using the formulas from Appendix C,

$$
2 \sin x \sin y=\cos (x-y)-(\cos x+y),
$$

we have

$$
y_{s}=8 \sin (0.4 \pi) \sin 30 x=7.61 \sin 30 x .
$$

Hence,

$$
\left|y_{\mathrm{s}}\right|_{\max }=7.61
$$

and it occurs when $\sin 30 x=1$, or $30 x=\frac{\pi}{2}+2 n \pi$, or $x=\left(\frac{\pi}{60}+\frac{2 n \pi}{30}\right) \mathrm{cm}$, where $n=0,1,2, \ldots$.
(c) $\left|y_{\mathrm{s}}\right|_{\text {min }}=0$ and it occurs when $30 x=n \pi$, or $x=\frac{n \pi}{30} \mathrm{~cm}$.

Problem 1.8 Give expressions for $y(x, t)$ for a sinusoidal wave traveling along a string in the negative x-direction, given that $y_{\max }=40 \mathrm{~cm}, \lambda=30 \mathrm{~cm}, f=10 \mathrm{~Hz}$, and
(a) $y(x, 0)=0$ at $x=0$,
(b) $y(x, 0)=0$ at $x=7.5 \mathrm{~cm}$.

Solution: For a wave traveling in the negative x-direction, we use Eq. (1.17) with $\omega=2 \pi f=20 \pi(\mathrm{rad} / \mathrm{s}), \beta=2 \pi / \lambda=2 \pi / 0.3=20 \pi / 3(\mathrm{rad} / \mathrm{s}), A=40 \mathrm{~cm}$, and x assigned a positive sign:

$$
y(x, t)=40 \cos \left(20 \pi t+\frac{20 \pi}{3} x+\phi_{0}\right) \quad(\mathrm{cm})
$$

with x in meters.
(a) $y(0,0)=0=40 \cos \phi_{0}$. Hence, $\phi_{0}= \pm \pi / 2$, and

$$
\begin{aligned}
y(x, t) & =40 \cos \left(20 \pi t+\frac{20 \pi}{3} x \pm \frac{\pi}{2}\right) \\
& = \begin{cases}-40 \sin \left(20 \pi t+\frac{20 \pi}{3} x\right)(\mathrm{cm}), & \text { if } \phi_{0}=\pi / 2 \\
40 \sin \left(20 \pi t+\frac{20 \pi}{3} x\right)(\mathrm{cm}), & \text { if } \phi_{0}=-\pi / 2 .\end{cases}
\end{aligned}
$$

(b) At $x=7.5 \mathrm{~cm}=7.5 \times 10^{-2} \mathrm{~m}, \quad y=0=40 \cos \left(\pi / 2+\phi_{0}\right)$. Hence, $\phi_{0}=0$ or π, and

$$
y(x, t)= \begin{cases}40 \cos \left(20 \pi t+\frac{20 \pi}{3} x\right)(\mathrm{cm}), & \text { if } \phi_{0}=0, \\ -40 \cos \left(20 \pi t+\frac{2 \pi}{3} x\right)(\mathrm{cm}), & \text { if } \phi_{0}=\pi .\end{cases}
$$

Problem 1.9 An oscillator that generates a sinusoidal wave on a string completes 20 vibrations in 50 s . The wave peak is observed to travel a distance of 2.8 m along the string in 50 s . What is the wavelength?

Solution:

$$
\begin{aligned}
T=\frac{50}{20} & =2.5 \mathrm{~s}, \quad u_{\mathrm{p}}=\frac{2.8}{5}=0.56 \mathrm{~m} / \mathrm{s}, \\
\lambda & =u_{\mathrm{p}} T=0.56 \times 2.5=1.4 \mathrm{~m} .
\end{aligned}
$$

Problem 1.10 The vertical displacement of a string is given by the harmonic function:

$$
y(x, t)=6 \cos (16 \pi t-20 \pi x) \quad(\mathrm{m})
$$

where x is the horizontal distance along the string in meters. Suppose a tiny particle were to be attached to the string at $x=5 \mathrm{~cm}$, obtain an expression for the vertical velocity of the particle as a function of time.

Solution:

$$
\begin{aligned}
y(x, t) & =6 \cos (16 \pi t-20 \pi x) \\
u(0.05, t) & =\left.\frac{d y(x, t)}{d t}\right|_{x=0.05} \\
& =\left.96 \pi \sin (16 \pi t-20 \pi x)\right|_{x=0.05} \\
& =96 \pi \sin (16 \pi t-\pi) \\
& =-96 \pi \sin (16 \pi t) \quad(\mathrm{m} / \mathrm{s}) .
\end{aligned}
$$

Problem 1.11 Given two waves characterized by

$$
\begin{aligned}
& y_{1}(t)=3 \cos \omega t \\
& y_{2}(t)=3 \sin \left(\omega t+36^{\circ}\right),
\end{aligned}
$$

does $y_{2}(t)$ lead or lag $y_{1}(t)$, and by what phase angle?
Solution: We need to express $y_{2}(t)$ in terms of a cosine function:

$$
\begin{aligned}
y_{2}(t) & =3 \sin \left(\omega t+36^{\circ}\right) \\
& =3 \cos \left(\frac{\pi}{2}-\omega t-36^{\circ}\right)=3 \cos \left(54^{\circ}-\omega t\right)=3 \cos \left(\omega t-54^{\circ}\right) .
\end{aligned}
$$

Hence, $y_{2}(t)$ lags $y_{1}(t)$ by 54°.

Problem 1.12 The voltage of an electromagnetic wave traveling on a transmission line is given by $v(z, t)=5 e^{-\alpha z} \sin \left(4 \pi \times 10^{9} t-20 \pi z\right)(\mathrm{V})$, where z is the distance in meters from the generator.
(a) Find the frequency, wavelength, and phase velocity of the wave.
(b) At $z=2 \mathrm{~m}$, the amplitude of the wave was measured to be 1 V . Find α.

Solution:

(a) This equation is similar to that of Eq. (1.28) with $\omega=4 \pi \times 10^{9} \mathrm{rad} / \mathrm{s}$ and $\beta=20 \pi \mathrm{rad} / \mathrm{m}$. From Eq. (1.29a), $f=\omega / 2 \pi=2 \times 10^{9} \mathrm{~Hz}=2 \mathrm{GHz}$; from Eq. (1.29b), $\lambda=2 \pi / \beta=0.1 \mathrm{~m}$. From Eq. (1.30),

$$
u_{\mathrm{p}}=\omega / \beta=2 \times 10^{8} \mathrm{~m} / \mathrm{s} .
$$

(b) Using just the amplitude of the wave,

$$
1=5 e^{-\alpha 2}, \quad \alpha=\frac{-1}{2 \mathrm{~m}} \ln \left(\frac{1}{5}\right)=0.81 \mathrm{~Np} / \mathrm{m} .
$$

Problem 1.13 A certain electromagnetic wave traveling in sea water was observed to have an amplitude of $98.02(\mathrm{~V} / \mathrm{m})$ at a depth of 10 m and an amplitude of 81.87 $(\mathrm{V} / \mathrm{m})$ at a depth of 100 m . What is the attenuation constant of sea water?
Solution: The amplitude has the form $A e^{\alpha z}$. At $z=10 \mathrm{~m}$,

$$
A e^{-10 \alpha}=98.02
$$

and at $z=100 \mathrm{~m}$,

$$
A e^{-100 \alpha}=81.87
$$

The ratio gives

$$
\frac{e^{-10 \alpha}}{e^{-100 \alpha}}=\frac{98.02}{81.87}=1.20
$$

or

$$
e^{-10 \alpha}=1.2 e^{-100 \alpha}
$$

Taking the natural \log of both sides gives

$$
\begin{aligned}
\ln \left(e^{-10 \alpha}\right) & =\ln \left(1.2 e^{-100 \alpha}\right), \\
-10 \alpha & =\ln (1.2)-100 \alpha, \\
90 \alpha & =\ln (1.2)=0.18 .
\end{aligned}
$$

Hence,

$$
\alpha=\frac{0.18}{90}=2 \times 10^{-3} \quad(\mathrm{~Np} / \mathrm{m}) .
$$

Section 1-5: Complex Numbers

Problem 1.14 Evaluate each of the following complex numbers and express the result in rectangular form:
(a) $z_{1}=4 e^{j \pi / 3}$,
(b) $z_{2}=\sqrt{3} e^{j 3 \pi / 4}$,
(c) $z_{3}=6 e^{-j \pi / 2}$,
(d) $z_{4}=j^{3}$,
(e) $z_{5}=j^{-4}$,
(f) $z_{6}=(1-j)^{3}$,
(g) $z_{7}=(1-j)^{1 / 2}$.

Solution: (Note: In the following solutions, numbers are expressed to only two decimal places, but the final answers are found using a calculator with 10 decimal places.)
(a) $z_{1}=4 e^{j \pi / 3}=4(\cos \pi / 3+j \sin \pi / 3)=2.0+j 3.46$.
(b)
$z_{2}=\sqrt{3} e^{j 3 \pi / 4}=\sqrt{3}\left[\cos \left(\frac{3 \pi}{4}\right)+j \sin \left(\frac{3 \pi}{4}\right)\right]=-1.22+j 1.22=1.22(-1+j)$.
(c) $z_{3}=6 e^{-j \pi / 2}=6[\cos (-\pi / 2)+j \sin (-\pi / 2)]=-j 6$.
(d) $z_{4}=j^{3}=j \cdot j^{2}=-j$, or

$$
z_{4}=j^{3}=\left(e^{j \pi / 2}\right)^{3}=e^{j 3 \pi / 2}=\cos (3 \pi / 2)+j \sin (3 \pi / 2)=-j .
$$

(e) $z_{5}=j^{-4}=\left(e^{j \pi / 2}\right)^{-4}=e^{-j 2 \pi}=1$.
(f)

$$
\begin{aligned}
z_{6}=(1-j)^{3}=\left(\sqrt{2} e^{-j \pi / 4}\right)^{3} & =(\sqrt{2})^{3} e^{-j 3 \pi / 4} \\
& =(\sqrt{2})^{3}[\cos (3 \pi / 4)-j \sin (3 \pi / 4)] \\
& =-2-j 2=-2(1+j) .
\end{aligned}
$$

(g)

$$
\begin{aligned}
z_{7}=(1-j)^{1 / 2}=\left(\sqrt{2} e^{-j \pi / 4}\right)^{1 / 2}= \pm 2^{1 / 4} e^{-j \pi / 8} & = \pm 1.19(0.92-j 0.38) \\
& = \pm(1.10-j 0.45) .
\end{aligned}
$$

Problem 1.15 Complex numbers z_{1} and z_{2} are given by

$$
\begin{aligned}
& z_{1}=3-j 2 \\
& z_{2}=-4+j 3 .
\end{aligned}
$$

(a) Express z_{1} and z_{2} in polar form.
(b) Find $\left|z_{1}\right|$ by applying Eq. (1.41) and again by applying Eq. (1.43).
(c) Determine the product $z_{1} z_{2}$ in polar form.
(d) Determine the ratio z_{1} / z_{2} in polar form.
(e) Determine z_{1}^{3} in polar form.

Solution:

(a) Using Eq. (1.41),

$$
\begin{aligned}
& z_{1}=3-j 2=3.6 e^{-j 33.7^{\circ}} \\
& z_{2}=-4+j 3=5 e^{j 143.1^{\circ}}
\end{aligned}
$$

(b) By Eq. (1.41) and Eq. (1.43), respectively,

$$
\begin{aligned}
& \left|z_{1}\right|=|3-j 2|=\sqrt{3^{2}+(-2)^{2}}=\sqrt{13}=3.60, \\
& \left|z_{1}\right|=\sqrt{(3-j 2)(3+j 2)}=\sqrt{13}=3.60 .
\end{aligned}
$$

(c) By applying Eq. (1.47b) to the results of part (a),

$$
z_{1} z_{2}=3.6 e^{-j 33.7^{\circ}} \times 5 e^{j 143.1^{\circ}}=18 e^{j 109.4^{\circ}} .
$$

(d) By applying Eq. (1.48b) to the results of part (a),

$$
\frac{z_{1}}{z_{2}}=\frac{3.6 e^{-j 33.7^{\circ}}}{5 e^{j 143.1^{\circ}}}=0.72 e^{-j 176.8^{\circ}}
$$

(e) By applying Eq. (1.49) to the results of part (a),

$$
z_{1}^{3}=\left(3.6 e^{-j 33.7^{\circ}}\right)^{3}=(3.6)^{3} e^{-j 3 \times 3337^{\circ}}=46.66 e^{-j 101.1^{\circ}}
$$

Problem 1.16 If $z=-2+j 4$, determine the following quantities in polar form:
(a) $1 / z$,
(b) z^{3},
(c) $|z|^{2}$,
(d) $\mathfrak{I m}\{z\}$,
(e) $\mathfrak{I m}\left\{z^{*}\right\}$.

Solution: (Note: In the following solutions, numbers are expressed to only two decimal places, but the final answers are found using a calculator with 10 decimal places.)
(a)
$\frac{1}{z}=\frac{1}{-2+j 4}=(-2+j 4)^{-1}=\left(4.47 e^{j 116.6^{\circ}}\right)^{-1}=(4.47)^{-1} e^{-j 116.6^{\circ}}=0.22 e^{-j 116.6^{\circ}}$.
(b) $z^{3}=(-2+j 4)^{3}=\left(4.47 e^{j 116.6^{\circ}}\right)^{3}=(4.47)^{3} e^{j 350.0^{\circ}}=89.44 e^{-j 10^{\circ}}$.
(c) $|z|^{2}=z \cdot z^{*}=(-2+j 4)(-2-j 4)=4+16=20$.
(d) $\mathfrak{I m}\{z\}=\mathfrak{I m}\{-2+j 4\}=4$.
(e) $\mathfrak{I m}\left\{z^{*}\right\}=\mathfrak{I m}\{-2-j 4\}=-4=4 e^{j \pi}$.

Problem 1.17 Find complex numbers $t=z_{1}+z_{2}$ and $s=z_{1}-z_{2}$, both in polar form, for each of the following pairs:
(a) $z_{1}=2+j 3, z_{2}=1-j 3$,
(b) $z_{1}=3, z_{2}=-j 3$,
(c) $z_{1}=3 \angle 30^{\circ}, z_{2}=3 \angle-30^{\circ}$,
(d) $z_{1}=3 \angle 30^{\circ}, z_{2}=3 \angle-150^{\circ}$.

Solution:

(a)

$$
\begin{aligned}
& t=z_{1}+z_{2}=(2+j 3)+(1-j 3)=3, \\
& s=z_{1}-z_{2}=(2+j 3)-(1-j 3)=1+j 6=6.08 e^{j 80.5^{\circ}} .
\end{aligned}
$$

(b)

$$
\begin{aligned}
& t=z_{1}+z_{2}=3-j 3=4.24 e^{-j 45^{\circ}}, \\
& s=z_{1}-z_{2}=3+j 3=4.24 e^{j 45^{\circ}} .
\end{aligned}
$$

(c)

$$
\begin{aligned}
t=z_{1}+z_{2} & =3 \angle 30^{\circ}+3 \angle-30^{\circ} \\
& =3 e^{j 30^{\circ}}+3 e^{-j 30^{\circ}}=(2.6+j 1.5)+(2.6-j 1.5)=5.2, \\
s=z_{1}-z_{2} & =3 e^{j 30^{\circ}}-3 e^{-j 30^{\circ}}=(2.6+j 1.5)-(2.6-j 1.5)=j 3=3 e^{j 90^{\circ}} .
\end{aligned}
$$

(d)

$$
\begin{aligned}
& t=z_{1}+z_{2}=3 \angle 30^{\circ}+3 \angle-150^{\circ}=(2.6+j 1.5)+(-2.6-j 1.5)=0, \\
& s=z_{1}-z_{2}=(2.6+j 1.5)-(-2.6-j 1.5)=5.2+j 3=6 e^{j 30^{\circ}} .
\end{aligned}
$$

Problem 1.18 Complex numbers z_{1} and z_{2} are given by

$$
\begin{aligned}
& z_{1}=5 \angle-60^{\circ} \\
& z_{2}=2 \angle 45^{\circ} .
\end{aligned}
$$

(a) Determine the product $z_{1} z_{2}$ in polar form.
(b) Determine the product $z_{1} z_{2}^{*}$ in polar form.
(c) Determine the ratio z_{1} / z_{2} in polar form.
(d) Determine the ratio z_{1}^{*} / z_{2}^{*} in polar form.
(e) Determine $\sqrt{z_{1}}$ in polar form.

Solution:

(a) $z_{1} z_{2}=5 e^{-j 60^{\circ}} \times 2 e^{j 45^{\circ}}=10 e^{-j 15^{\circ}}$.
(b) $z_{1} z_{2}^{*}=5 e^{-j 60^{\circ}} \times 2 e^{-j 45^{\circ}}=10 e^{-j 105^{\circ}}$.
(c) $\frac{z_{1}}{z_{2}}=\frac{5 e^{-j 60^{\circ}}}{2 e^{j 45^{\circ}}}=2.5^{-j 105^{\circ}}$.
(d) $\frac{z_{1}^{*}}{z_{2}^{*}}=\left(\frac{z_{1}}{z_{2}}\right)^{*}=2.5^{j 105^{\circ}}$.
(e) $\sqrt{z_{1}}=\sqrt{5 e^{-j 60^{\circ}}}= \pm \sqrt{5} e^{-j 30^{\circ}}$.

Problem 1.19 If $z=3-j 5$, find the value of $\ln (z)$.

Solution:

$$
\begin{aligned}
|z| & =+\sqrt{3^{2}+5^{2}}=5.83, \quad \theta=\tan ^{-1}\left(\frac{-5}{3}\right)=-59^{\circ}, \\
z & =|z| e^{j \theta}=5.83 e^{-j 59^{\circ}}, \\
\ln (z) & =\ln \left(5.83 e^{-j 59^{\circ}}\right) \\
& =\ln (5.83)+\ln \left(e^{-j 59^{\circ}}\right) \\
& =1.76-j 59^{\circ}=1.76-j \frac{59^{\circ} \pi}{180^{\circ}}=1.76-j 1.03 .
\end{aligned}
$$

Problem 1.20 If $z=3-j 4$, find the value of e^{z}.

Solution:

$$
\begin{aligned}
& e^{z}=e^{3-j 4}=e^{3} \cdot e^{-j 4}=e^{3}(\cos 4-j \sin 4), \\
& e^{3}=20.09, \quad \text { and } \quad 4 \mathrm{rad}=\frac{4}{\pi} \times 180^{\circ}=229.18^{\circ} .
\end{aligned}
$$

Hence, $e^{z}=20.08\left(\cos 229.18^{\circ}-j \sin 229.18^{\circ}\right)=-13.13+j 15.20$.

Section 1-6: Phasors

Problem 1.21 A voltage source given by $v_{\mathrm{s}}(t)=25 \cos \left(2 \pi \times 10^{3} t-30^{\circ}\right)(\mathrm{V})$ is connected to a series RC load as shown in Fig. 1-19. If $R=1 \mathrm{M} \Omega$ and $C=200 \mathrm{pF}$, obtain an expression for $v_{\mathrm{c}}(t)$, the voltage across the capacitor.
Solution: In the phasor domain, the circuit is a voltage divider, and

$$
\widetilde{V}_{\mathrm{c}}=\widetilde{V}_{\mathrm{s}} \frac{1 / j \omega C}{R+1 / j \omega C}=\frac{\widetilde{V}_{\mathrm{s}}}{(1+j \omega R C)} .
$$

Now $\widetilde{V}_{\mathrm{s}}=25 e^{-j 30^{\circ}} \mathrm{V}$ with $\omega=2 \pi \times 10^{3} \mathrm{rad} / \mathrm{s}$, so

$$
\begin{aligned}
\widetilde{V}_{\mathrm{c}} & =\frac{25 e^{-j 30^{\circ}} \mathrm{V}}{1+j\left(\left(2 \pi \times 10^{3} \mathrm{rad} / \mathrm{s}\right) \times\left(10^{6} \Omega\right) \times\left(200 \times 10^{-12} \mathrm{~F}\right)\right)} \\
& =\frac{25 e^{-j 30^{\circ}} \mathrm{V}}{1+j 2 \pi / 5}=15.57 e^{-j 81.5^{\circ}} \mathrm{V}
\end{aligned}
$$

Converting back to an instantaneous value,

$$
v_{\mathrm{c}}(t)=\mathfrak{R e} \widetilde{V}_{\mathrm{c}} e^{j \omega t}=\mathfrak{R e} 15.57 e^{j\left(\omega t-81.5^{\circ}\right)} \mathrm{V}=15.57 \cos \left(2 \pi \times 10^{3} t-81.5^{\circ}\right) \mathrm{V},
$$

where t is expressed in seconds.

Problem 1.22 Find the phasors of the following time functions:
(a) $v(t)=3 \cos (\omega t-\pi / 3)(\mathrm{V})$,
(b) $v(t)=12 \sin (\omega t+\pi / 4)(\mathrm{V})$,
(c) $i(x, t)=2 e^{-3 x} \sin (\omega t+\pi / 6)(\mathrm{A})$,
(d) $i(t)=-2 \cos (\omega t+3 \pi / 4)$ (A),
(e) $i(t)=4 \sin (\omega t+\pi / 3)+3 \cos (\omega t-\pi / 6)$ (A).

Solution:

(a) $\widetilde{V}=3 e^{-j \pi / 3} \mathrm{~V}$.
(b) $v(t)=12 \sin (\omega t+\pi / 4)=12 \cos (\pi / 2-(\omega t+\pi / 4))=12 \cos (\omega t-\pi / 4) \mathrm{V}$, $\widetilde{V}=12 e^{-j \pi / 4} \mathrm{~V}$.
(c)

$$
\begin{aligned}
i(t) & =2 e^{-3 x} \sin (\omega t+\pi / 6) \mathrm{A}=2 e^{-3 x} \cos (\pi / 2-(\omega t+\pi / 6)) \mathrm{A} \\
& =2 e^{-3 x} \cos (\omega t-\pi / 3) \mathrm{A}, \\
\widetilde{I} & =2 e^{-3 x} e^{-j \pi / 3} \mathrm{~A} .
\end{aligned}
$$

(d)

$$
\begin{aligned}
i(t) & =-2 \cos (\omega t+3 \pi / 4), \\
\widetilde{I} & =-2 e^{j 3 \pi / 4}=2 e^{-j \pi} e^{j 3 \pi / 4}=2 e^{-j \pi / 4} \mathrm{~A} .
\end{aligned}
$$

(e)

$$
\begin{aligned}
i(t) & =4 \sin (\omega t+\pi / 3)+3 \cos (\omega t-\pi / 6) \\
& =4 \cos [\pi / 2-(\omega t+\pi / 3)]+3 \cos (\omega t-\pi / 6) \\
& =4 \cos (-\omega t+\pi / 6)+3 \cos (\omega t-\pi / 6) \\
& =4 \cos (\omega t-\pi / 6)+3 \cos (\omega t-\pi / 6)=7 \cos (\omega t-\pi / 6), \\
\widetilde{I} & =7 e^{-j \pi / 6} \mathrm{~A} .
\end{aligned}
$$

Problem 1.23 Find the instantaneous time sinusoidal functions corresponding to the following phasors:
(a) $\widetilde{V}=-5 e^{j \pi / 3}(\mathrm{~V})$,
(b) $\widetilde{V}=j 6 e^{-j \pi / 4}(\mathrm{~V})$,
(c) $\widetilde{I}=(6+j 8)(\mathrm{A})$,
(d) $\tilde{I}=-3+j 2$ (A),
(e) $\tilde{I}=j$ (A),
(f) $\tilde{I}=2 e^{j \pi / 6}(\mathrm{~A})$.

Solution:

(a)

$$
\begin{aligned}
\widetilde{V} & =-5 e^{j \pi / 3} \mathrm{~V}=5 e^{j(\pi / 3-\pi)} \mathrm{V}=5 e^{-j 2 \pi / 3} \mathrm{~V}, \\
v(t) & =5 \cos (\omega t-2 \pi / 3) \mathrm{V}
\end{aligned}
$$

(b)

$$
\begin{aligned}
\widetilde{V} & =j 6 e^{-j \pi / 4} \mathrm{~V}=6 e^{j(-\pi / 4+\pi / 2)} \mathrm{V}=6 e^{j \pi / 4} \mathrm{~V}, \\
v(t) & =6 \cos (\omega t+\pi / 4) \mathrm{V} .
\end{aligned}
$$

(c)

$$
\begin{aligned}
\widetilde{I} & =(6+j 8) \mathrm{A}=10 e^{j 53.1^{\circ}} \mathrm{A}, \\
i(t) & =10 \cos \left(\omega t+53.1^{\circ}\right) \mathrm{A} .
\end{aligned}
$$

(d)

$$
\begin{aligned}
\widetilde{I} & =-3+j 2=3.61 e^{j 146.31^{\circ}} \\
i(t) & =\mathfrak{R e}\left\{3.61 e^{j 146.31^{\circ}} e^{j \omega t}\right\}=3.61 \cos \left(\omega t+146.31^{\circ}\right) \mathrm{A} .
\end{aligned}
$$

(e)

$$
\begin{aligned}
\widetilde{I} & =j=e^{j \pi / 2} \\
i(t) & =\mathfrak{R e}\left\{e^{j \pi / 2} e^{j \omega t}\right\}=\cos (\omega t+\pi / 2)=-\sin \omega t \mathrm{~A} .
\end{aligned}
$$

(f)

$$
\begin{aligned}
\widetilde{I} & =2 e^{j \pi / 6}, \\
i(t) & =\mathfrak{R e}\left\{2 e^{j \pi / 6} e^{j \omega t}\right\}=2 \cos (\omega t+\pi / 6) \mathrm{A} .
\end{aligned}
$$

Problem 1.24 A series RLC circuit is connected to a generator with a voltage $v_{\mathrm{s}}(t)=V_{0} \cos (\omega t+\pi / 3)(\mathrm{V})$.
(a) Write down the voltage loop equation in terms of the current $i(t), R, L, C$, and $v_{\mathrm{s}}(t)$.
(b) Obtain the corresponding phasor-domain equation.
(c) Solve the equation to obtain an expression for the phasor current \tilde{I}.

Figure P1.24: RLC circuit.

Solution:

(a) $v_{\mathrm{s}}(t)=R i+L \frac{d i}{d t}+\frac{1}{C} \int i d t$.
(b) In phasor domain: $\widetilde{V}_{\mathrm{s}}=R \tilde{I}+j \omega L \tilde{I}+\frac{\tilde{I}}{j \omega C}$.
(c) $\tilde{I}=\frac{\widetilde{V}_{\mathrm{s}}}{R+j(\omega L-1 / \omega C)}=\frac{V_{0} e^{j \pi / 3}}{R+j(\omega L-1 / \omega C)}=\frac{\omega C V_{0} e^{j \pi / 3}}{\omega R C+j\left(\omega^{2} L C-1\right)}$.

Problem 1.25 A wave traveling along a string is given by

$$
y(x, t)=2 \sin (4 \pi t+10 \pi x)
$$

where x is the distance along the string in meters and y is the vertical displacement. Determine: (a) the direction of wave travel, (b) the reference phase ϕ_{0}, (c) the frequency, (d) the wavelength, and (e) the phase velocity.

Solution:

(a) We start by converting the given expression into a cosine function of the form given by (1.17):

$$
y(x, t)=2 \cos \left(4 \pi t+10 \pi x-\frac{\pi}{2}\right) \quad(\mathrm{cm}) .
$$

Since the coefficients of t and x both have the same sign, the wave is traveling in the negative x-direction.
(b) From the cosine expression, $\phi_{0}=-\pi / 2$.
(c) $\omega=2 \pi f=4 \pi$,

$$
f=4 \pi / 2 \pi=2 \mathrm{~Hz} .
$$

(d) $2 \pi / \lambda=10 \pi$,

$$
\lambda=2 \pi / 10 \pi=0.2 \mathrm{~m} .
$$

(e) $u_{\mathrm{p}}=f \lambda=2 \times 0.2=0.4(\mathrm{~m} / \mathrm{s})$.

Problem 1.26 A laser beam traveling through fog was observed to have an intensity of $1\left(\mu \mathrm{~W} / \mathrm{m}^{2}\right)$ at a distance of 2 m from the laser gun and an intensity of 0.2 $\left(\mu \mathrm{W} / \mathrm{m}^{2}\right)$ at a distance of 3 m . Given that the intensity of an electromagnetic wave is proportional to the square of its electric-field amplitude, find the attenuation constant α of fog.

Solution: If the electric field is of the form

$$
E(x, t)=E_{0} e^{-\alpha x} \cos (\omega t-\beta x),
$$

then the intensity must have a form

$$
\begin{aligned}
I(x, t) & \approx\left[E_{0} e^{-\alpha x} \cos (\omega t-\beta x)\right]^{2} \\
& \approx E_{0}^{2} e^{-2 \alpha x} \cos ^{2}(\omega t-\beta x)
\end{aligned}
$$

or

$$
I(x, t)=I_{0} e^{-2 \alpha x} \cos ^{2}(\omega t-\beta x)
$$

where we define $I_{0} \approx E_{0}^{2}$. We observe that the magnitude of the intensity varies as $I_{0} e^{-2 \alpha x}$. Hence,

$$
\begin{array}{ll}
\text { at } x=2 \mathrm{~m}, & I_{0} e^{-4 \alpha}=1 \times 10^{-6} \quad\left(\mathrm{~W} / \mathrm{m}^{2}\right) \\
\text { at } x=3 \mathrm{~m}, & I_{0} e^{-6 \alpha}=0.2 \times 10^{-6} \quad\left(\mathrm{~W} / \mathrm{m}^{2}\right) .
\end{array}
$$

$$
\begin{aligned}
\frac{I_{0} e^{-4 \alpha}}{I_{0} e^{-6 \alpha}} & =\frac{10^{-6}}{0.2 \times 10^{-6}}=5 \\
e^{-4 \alpha} \cdot e^{6 \alpha} & =e^{2 \alpha}=5 \\
\alpha & =0.8 \quad(\mathrm{NP} / \mathrm{m}) .
\end{aligned}
$$

Problem 1.27 Complex numbers z_{1} and z_{2} are given by

$$
\begin{aligned}
& z_{1}=-3+j 2 \\
& z_{2}=1-j 2
\end{aligned}
$$

Determine (a) $z_{1} z_{2}$, (b) z_{1} / z_{2}^{*}, (c) z_{1}^{2}, and (d) $z_{1} z_{1}^{*}$, all all in polar form.

Solution:

(a) We first convert z_{1} and z_{2} to polar form:

$$
\begin{aligned}
& z_{1}=-(3-j 2)=-\left(\sqrt{3^{2}+2^{2}} e^{-j \tan ^{-1} 2 / 3}\right) \\
&=-\sqrt{13} e^{-j 33.7^{\circ}} \\
&= \sqrt{13} e^{j\left(180^{\circ}-33.7^{\circ}\right)} \\
&= \sqrt{13} e^{j 146.3^{\circ}} . \\
& z_{2}=1-j 2=\sqrt{1+4} e^{-j \tan ^{-1} 2} \\
&=\sqrt{5} e^{-j 63.4^{\circ}} . \\
& z_{1} z_{2}=\sqrt{13} e^{j 146.3^{\circ}} \times \sqrt{5} e^{-j 63.4^{\circ}} \\
&=\sqrt{65} e^{j 82.9^{\circ}} .
\end{aligned}
$$

(b)

$$
\frac{z_{1}}{z_{2}^{*}}=\frac{\sqrt{13} e^{j 146.3^{\circ}}}{\sqrt{5} e^{j 63.4^{\circ}}}=\sqrt{\frac{13}{5}} e^{j 82.9^{\circ}} .
$$

(c)

$$
\begin{aligned}
z_{1}^{2}=(\sqrt{13})^{2}\left(e^{j 146.3^{\circ}}\right)^{2} & =13 e^{j 292.6^{\circ}} \\
& =13 e^{-j 360^{\circ}} e^{j 292.6^{\circ}} \\
& =13 e^{-j 67.4^{\circ}} .
\end{aligned}
$$

(d)

$$
\begin{aligned}
z_{1} z_{1}^{*} & =\sqrt{13} e^{j 146.3^{\circ}} \times \sqrt{13} e^{-j 146.3^{\circ}} \\
& =13 .
\end{aligned}
$$

Problem 1.28 If $z=3 e^{j \pi / 6}$, find the value of e^{z}.

Solution:

$$
\begin{aligned}
z=3 e^{j \pi / 6} & =3 \cos \pi / 6+j 3 \sin \pi / 6 \\
& =2.6+j 1.5 \\
e^{z}=e^{2.6+j 1.5} & =e^{2.6} \times e^{j 1.5} \\
& =e^{2.6}(\cos 1.5+j \sin 1.5) \\
& =13.46(0.07+j 0.98) \\
& =0.95+j 13.43 .
\end{aligned}
$$

Problem 1.29 The voltage source of the circuit shown in the figure is given by

$$
v_{\mathrm{s}}(t)=25 \cos \left(4 \times 10^{4} t-45^{\circ}\right) \quad(\mathrm{V})
$$

Obtain an expression for $i_{\mathrm{L}}(t)$, the current flowing through the inductor.

Solution: Based on the given voltage expression, the phasor source voltage is

$$
\begin{equation*}
\widetilde{V}_{\mathrm{s}}=25 e^{-j 45^{\circ}} \quad(\mathrm{V}) . \tag{9}
\end{equation*}
$$

The voltage equation for the left-hand side loop is

$$
\begin{equation*}
R_{1} i+R_{2} i_{R_{2}}=v_{\mathrm{s}} \tag{10}
\end{equation*}
$$

For the right-hand loop,

$$
\begin{equation*}
R_{2} i_{R_{2}}=L \frac{d i_{\mathrm{L}}}{d t} \tag{11}
\end{equation*}
$$

and at node A,

$$
\begin{equation*}
i=i_{R_{2}}+i_{\mathrm{L}} . \tag{12}
\end{equation*}
$$

Next, we convert Eqs. (2)-(4) into phasor form:

$$
\begin{align*}
R_{1} \widetilde{I}+R_{2} \widetilde{I}_{R_{2}} & =\widetilde{V}_{\mathrm{s}} \tag{13}\\
R_{2} \widetilde{I}_{R_{2}} & =j \omega L \widetilde{I}_{\mathrm{L}} \tag{14}\\
\widetilde{I} & =\widetilde{I}_{R_{2}}+\widetilde{L}_{\mathrm{L}} \tag{15}
\end{align*}
$$

Upon combining (6) and (7) to solve for $\widetilde{I}_{R_{2}}$ in terms of \widetilde{I}, we have:

$$
\begin{equation*}
\widetilde{I}_{R_{2}}=\frac{j \omega L}{R_{2}+j \omega L} I \tag{16}
\end{equation*}
$$

Substituting (8) in (5) and then solving for \widetilde{I} leads to:

$$
\begin{gather*}
R_{1} \widetilde{I}+\frac{j R_{2} \omega L}{R_{2}+j \omega L} \widetilde{I}=\widetilde{V}_{\mathrm{s}} \\
\widetilde{I}\left(R_{1}+\frac{j R_{2} \omega L}{R_{2}+j \omega L}\right)=\widetilde{V}_{\mathrm{s}} \\
\widetilde{I}\left(\frac{R_{1} R_{2}+j R_{1} \omega L+j R_{2} \omega L}{R_{2}+j \omega L}\right)=\widetilde{V}_{\mathrm{s}} \\
\widetilde{I}=\left(\frac{R_{2}+j \omega L}{R_{1} R_{2}+j \omega L\left(R_{1}+R_{2}\right)}\right) \widetilde{V}_{\mathrm{s}} . \tag{17}
\end{gather*}
$$

Combining (6) and (7) to solve for $\widetilde{I}_{\mathrm{L}}$ in terms of \widetilde{I} gives

$$
\begin{equation*}
\widetilde{I}_{\mathrm{L}}=\frac{R_{2}}{R_{2}+j \omega L} \widetilde{I} \tag{18}
\end{equation*}
$$

Combining (9) and (10) leads to

$$
\begin{aligned}
\widetilde{I}_{\mathrm{L}} & =\left(\frac{R_{2}}{R_{2}+j \omega L}\right)\left(\frac{R_{2}+j \omega L}{R_{1} R_{2}+j \omega L\left(R_{1}+R_{2}\right)}\right) \widetilde{V}_{\mathrm{s}} \\
& =\frac{R_{2}}{R_{1} R_{2}++j \omega L\left(R_{1}+R_{2}\right)} \widetilde{V}_{\mathrm{s}} .
\end{aligned}
$$

Using (1) for $\widetilde{V}_{\mathrm{s}}$ and replacing R_{1}, R_{2}, L and ω with their numerical values, we have

$$
\begin{aligned}
\widetilde{I}_{\mathrm{L}} & =\frac{30}{20 \times 30+j 4 \times 10^{4} \times 0.4 \times 10^{-3}(20+30)} 25 e^{-j 45^{\circ}} \\
& =\frac{30 \times 25}{600+j 800} e^{-j 45^{\circ}} \\
& =\frac{7.5}{6+j 8} e^{-j 45^{\circ}}=\frac{7.5 e^{-j 45^{\circ}}}{10 e^{j 53.1^{\circ}}}=0.75 e^{-j 98.1^{\circ}} \quad \text { (A) } .
\end{aligned}
$$

Finally,

$$
\begin{align*}
i_{\mathrm{L}}(t) & =\mathfrak{R e}\left[\widetilde{I}_{\mathrm{L}} e^{j \omega t}\right] \\
& =0.75 \cos \left(4 \times 10^{4} t-98.1^{\circ}\right) \tag{A}
\end{align*}
$$

