
Chapter 1:  Introduction:  Waves and Phasors 
 
 
Lesson #1 
Chapter — Section:  Chapter 1 
Topics:  EM history and how it relates to other fields 
 
Highlights: 

• EM in Classical era:  1000 BC to 1900   
• Examples of Modern Era Technology timelines   
• Concept of “fields” (gravitational, electric, magnetic) 
• Static vs. dynamic fields   
• The EM Spectrum 

 
Special Illustrations: 

• Timelines from CD-ROM 
 

Timeline for Electromagnetics in the Classical Era 
 
ca. 900  Legend has it that while walking 
BC  across a field in northern Greece, a 

shepherd named Magnus experiences 
a pull on the iron nails in his sandals 
by the black rock he was standing on. 
The region was later named Magnesia 
and the rock became known as 
magnetite [a form of iron with 
permanent magnetism]. 

 
ca. 600  Greek philosopher Thales  
BC describes how amber, 

after being rubbed 
with cat fur, can pick 
up feathers [static 
electricity].  

ca. 1000 Magnetic compass used as 
a navigational device.  

 

 

1752   Benjamin Franklin  
 (American) invents the 

lightning rod and 
demonstrates that 
lightning is electricity.  

 
1785 Charles-Augustin de  

Coulomb (French) demonstrates that 
the electrical force between charges is 
proportional to the inverse of the  
square of the distance between them.  

 
1800 Alessandro Volta 

(Italian) develops the 
first electric battery.  

1820 Hans Christian Oersted 
(Danish) demonstrates the 
interconnection between 
electricity and magnetism  
through his discovery that an electric 
current in a wire causes a compass 
needle to orient itself perpendicular to 
the wire.
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Highlights: 

• Wave properties 
• Complex numbers 
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Special Illustrations: 

• CD-ROM Modules 1.1-1.9 
• CD-ROM Demos 1.1-1.3 
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Chapter 1

Section 1-3: Traveling Waves

Problem 1.1 A 2-kHz sound wave traveling in the x-direction in air was observed to
have a differential pressure p

�
x � t ��� 10 N/m2 at x � 0 and t � 50 µs. If the reference

phase of p
�
x � t � is 36 � , find a complete expression for p

�
x � t � . The velocity of sound

in air is 330 m/s.

Solution: The general form is given by Eq. (1.17),

p
�
x � t ��� Acos

�
2πt
T � 2πx

λ 	 φ0 
 �
where it is given that φ0 � 36 � . From Eq. (1.26), T � 1 � f � 1 � � 2 � 103 ��� 0  5 ms.
From Eq. (1.27),

λ � up

f
� 330

2 � 103 � 0  165 m 
Also, since

p
�
x � 0 � t � 50 µs ��� 10 (N/m2) � Acos

�
2π � 50 � 10 � 6

5 � 10 � 4 	 36 � π rad
180 � 
� Acos

�
1  26 rad ��� 0  31A �

it follows that A � 10 � 0  31 � 32  36 N/m2. So, with t in (s) and x in (m),

p
�
x � t ��� 32  36cos � 2π � 106 t

500 � 2π � 103 x
165 	 36 ��� (N/m2)� 32  36cos

�
4π � 103t � 12  12πx 	 36 � � (N/m2) 

Problem 1.2 For the pressure wave described in Example 1-1, plot
(a) p

�
x � t � versus x at t � 0,

(b) p
�
x � t � versus t at x � 0.

Be sure to use appropriate scales for x and t so that each of your plots covers at least
two cycles.

Solution: Refer to Fig. P1.2(a) and Fig. P1.2(b).
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Figure P1.2: (a) Pressure wave as a function of distance at t � 0 and (b) pressure
wave as a function of time at x � 0.

Problem 1.3 A harmonic wave traveling along a string is generated by an oscillator
that completes 180 vibrations per minute. If it is observed that a given crest, or
maximum, travels 300 cm in 10 s, what is the wavelength?

Solution:

f � 180
60

� 3 Hz 
up � 300 cm

10 s
� 0  3 m/s 

λ � up

f
� 0  3

3
� 0  1 m � 10 cm 

Problem 1.4 Two waves, y1
�
t � and y2

�
t � , have identical amplitudes and oscillate at

the same frequency, but y2
�
t � leads y1

�
t � by a phase angle of 60 � . If

y1
�
t ��� 4cos

�
2π � 103t � �

write down the expression appropriate for y2
�
t � and plot both functions over the time

span from 0 to 2 ms.

Solution:
y2
�
t ��� 4cos

�
2π � 103t 	 60 � � 
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Figure P1.4: Plots of y1
�
t � and y2

�
t � .

Problem 1.5 The height of an ocean wave is described by the function

y
�
x � t ��� 1  5sin

�
0  5t � 0  6x � (m) 

Determine the phase velocity and the wavelength and then sketch y
�
x � t � at t � 2 s

over the range from x � 0 to x � 2λ.

Solution: The given wave may be rewritten as a cosine function:

y
�
x � t ��� 1  5cos

�
0  5t � 0  6x � π � 2 � 

By comparison of this wave with Eq. (1.32),

y
�
x � t ��� Acos

�
ωt � βx 	 φ0 � �

we deduce that

ω � 2π f � 0  5 rad/s � β � 2π
λ

� 0  6 rad/m �
up � ω

β
� 0  5

0  6 � 0  83 m/s � λ � 2π
β

� 2π
0  6 � 10  47 m 
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Figure P1.5: Plot of y
�
x � 2 � versus x.

At t � 2 s, y
�
x � 2 � � 1  5sin

�
1 � 0  6x � (m), with the argument of the cosine function

given in radians. Plot is shown in Fig. P1.5.

Problem 1.6 A wave traveling along a string in the 	 x-direction is given by

y1
�
x � t ��� Acos

�
ωt � βx � �

where x � 0 is the end of the string, which is tied rigidly to a wall, as shown in
Fig. 1-21 (P1.6). When wave y1

�
x � t � arrives at the wall, a reflected wave y2

�
x � t � is

generated. Hence, at any location on the string, the vertical displacement ys will be
the sum of the incident and reflected waves:

ys
�
x � t ��� y1

�
x � t � 	 y2

�
x � t � 

(a) Write down an expression for y2
�
x � t � , keeping in mind its direction of travel

and the fact that the end of the string cannot move.
(b) Generate plots of y1

�
x � t � , y2

�
x � t � and ys

�
x � t � versus x over the range� 2λ �

x
�

0 at ωt � π � 4 and at ωt � π � 2.

Solution:
(a) Since wave y2

�
x � t � was caused by wave y1

�
x � t � , the two waves must have the

same angular frequency ω, and since y2
�
x � t � is traveling on the same string as y1

�
x � t � ,
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Figure P1.6: Wave on a string tied to a wall at x � 0 (Problem 1.6).

the two waves must have the same phase constant β. Hence, with its direction being
in the negative x-direction, y2

�
x � t � is given by the general form

y2
�
x � t ��� Bcos

�
ωt 	 βx 	 φ0 � � (1)

where B and φ0 are yet-to-be-determined constants. The total displacement is

ys
�
x � t ��� y1

�
x � t � 	 y2

�
x � t ��� Acos

�
ωt � βx � 	 Bcos

�
ωt 	 βx 	 φ0 � 

Since the string cannot move at x � 0, the point at which it is attached to the wall,
ys
�
0 � t ��� 0 for all t. Thus,

ys
�
0 � t ��� Acosωt 	 Bcos

�
ωt 	 φ0 ��� 0  (2)

(i) Easy Solution: The physics of the problem suggests that a possible solution for
(2) is B � � A and φ0 � 0, in which case we have

y2
�
x � t ��� � Acos

�
ωt 	 βx �  (3)

(ii) Rigorous Solution: By expanding the second term in (2), we have

Acosωt 	 B
�
cosωt cosφ0 � sinωt sin φ0 ��� 0 �

or �
A 	 Bcosφ0 � cos ωt � �

Bsinφ0 � sin ωt � 0  (4)

This equation has to be satisfied for all values of t. At t � 0, it gives

A 	 Bcosφ0 � 0 � (5)
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and at ωt � π � 2, (4) gives

Bsinφ0 � 0  (6)

Equations (5) and (6) can be satisfied simultaneously only if

A � B � 0 (7)

or

A � � B and φ0 � 0  (8)

Clearly (7) is not an acceptable solution because it means that y1
�
x � t � � 0, which is

contrary to the statement of the problem. The solution given by (8) leads to (3).
(b) At ωt � π � 4,

y1
�
x � t ��� Acos

�
π � 4 � βx ��� Acos

�
π
4 � 2πx

λ 
 �
y2
�
x � t ��� � Acos

�
ωt 	 βx ��� � Acos

�
π
4 	 2πx

λ 
 
Plots of y1, y2, and y3 are shown in Fig. P1.6(b).
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Figure P1.6: (b) Plots of y1, y2, and ys versus x at ωt � π � 4.

At ωt � π � 2,

y1
�
x � t ��� Acos

�
π � 2 � βx ��� Asinβx � Asin

2πx
λ

�
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y2
�
x � t ��� � Acos

�
π � 2 	 βx ��� Asinβx � Asin

2πx
λ


Plots of y1, y2, and y3 are shown in Fig. P1.6(c).
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Figure P1.6: (c) Plots of y1, y2, and ys versus x at ωt � π � 2.

Problem 1.7 Two waves on a string are given by the following functions:

y1
�
x � t ��� 4cos

�
20t � 30x � (cm) �

y2
�
x � t ��� � 4cos

�
20t 	 30x � (cm) �

where x is in centimeters. The waves are said to interfere constructively when their
superposition � ys � ��� y1 	 y2 � is a maximum and they interfere destructively when � ys �
is a minimum.

(a) What are the directions of propagation of waves y1
�
x � t � and y2

�
x � t � ?

(b) At t � �
π � 50 � s, at what location x do the two waves interfere constructively,

and what is the corresponding value of � ys � ?
(c) At t � �

π � 50 � s, at what location x do the two waves interfere destructively,
and what is the corresponding value of � ys � ?

Solution:
(a) y1

�
x � t � is traveling in positive x-direction. y2

�
x � t � is traveling in negative

x-direction.
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(b) At t � �
π � 50 � s, ys � y1 	 y2 � 4 � cos

�
0  4π � 30x � � cos

�
0  4π 	 3x ��� . Using the

formulas from Appendix C,

2sin xsin y � cos
�
x � y � � �

cosx 	 y � �
we have

ys � 8sin
�
0  4π � sin 30x � 7  61sin 30x 

Hence,

� ys � max � 7  61

and it occurs when sin 30x � 1, or 30x � π
2 	 2nπ, or x � �

π
60 	 2nπ

30 
 cm, where

n � 0 � 1 � 2 �    
(c) � ys �min � 0 and it occurs when 30x � nπ, or x � nπ

30
cm.

Problem 1.8 Give expressions for y
�
x � t � for a sinusoidal wave traveling along a

string in the negative x-direction, given that ymax � 40 cm, λ � 30 cm, f � 10 Hz,
and

(a) y
�
x � 0 ��� 0 at x � 0,

(b) y
�
x � 0 ��� 0 at x � 7  5 cm.

Solution: For a wave traveling in the negative x-direction, we use Eq. (1.17) with
ω � 2π f � 20π (rad/s), β � 2π � λ � 2π � 0  3 � 20π � 3 (rad/s), A � 40 cm, and x
assigned a positive sign:

y
�
x � t ��� 40cos

�
20πt 	 20π

3
x 	 φ0 
 (cm) �

with x in meters.
(a) y

�
0 � 0 ��� 0 � 40cos φ0. Hence, φ0 ��� π � 2, and

y
�
x � t ��� 40cos

�
20πt 	 20π

3
x � π

2 

� � � 40sin � 20πt 	 20π

3 x � (cm), if φ0 � π � 2 �
40sin � 20πt 	 20π

3 x � (cm), if φ0 � � π � 2 
(b) At x � 7  5 cm = 7  5 � 10 � 2 m, y � 0 � 40cos

�
π � 2 	 φ0 � . Hence, φ0 � 0 or π,

and

y
�
x � t ��� �

40cos � 20πt 	 20π
3 x � (cm), if φ0 � 0 �� 40cos � 20πt 	 20π

3 x � (cm), if φ0 � π 
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Problem 1.9 An oscillator that generates a sinusoidal wave on a string completes
20 vibrations in 50 s. The wave peak is observed to travel a distance of 2.8 m along
the string in 50 s. What is the wavelength?

Solution:

T � 50
20

� 2  5 s � up � 2  8
5

� 0  56 m/s �
λ � upT � 0  56 � 2  5 � 1  4 m 

Problem 1.10 The vertical displacement of a string is given by the harmonic
function:

y
�
x � t ��� 6cos

�
16πt � 20πx � (m) �

where x is the horizontal distance along the string in meters. Suppose a tiny particle
were to be attached to the string at x � 5 cm, obtain an expression for the vertical
velocity of the particle as a function of time.

Solution:
y
�
x � t ��� 6cos

�
16πt � 20πx � (m) 

u
�
0  05 � t ��� dy

�
x � t �

dt ����
x � 0 � 05� 96πsin

�
16πt � 20πx � � x � 0 � 05� 96πsin
�
16πt � π �� � 96πsin
�
16πt � (m/s) 

Problem 1.11 Given two waves characterized by

y1
�
t ��� 3cos ωt �

y2
�
t ��� 3sin

�
ωt 	 36 � � �

does y2
�
t � lead or lag y1

�
t � , and by what phase angle?

Solution: We need to express y2
�
t � in terms of a cosine function:

y2
�
t ��� 3sin

�
ωt 	 36 � �� 3cos � π

2 � ωt � 36 � � � 3cos
�
54 � � ωt ��� 3cos

�
ωt � 54 � � 
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Hence, y2
�
t � lags y1

�
t � by 54 � .

Problem 1.12 The voltage of an electromagnetic wave traveling on a transmission
line is given by v

�
z � t � � 5e � αz sin

�
4π � 109t � 20πz � (V), where z is the distance in

meters from the generator.
(a) Find the frequency, wavelength, and phase velocity of the wave.
(b) At z � 2 m, the amplitude of the wave was measured to be 1 V. Find α.

Solution:
(a) This equation is similar to that of Eq. (1.28) with ω � 4π � 109 rad/s and

β � 20π rad/m. From Eq. (1.29a), f � ω � 2π � 2 � 109 Hz � 2 GHz; from
Eq. (1.29b), λ � 2π � β � 0  1 m. From Eq. (1.30),

up � ω � β � 2 � 108 m/s 
(b) Using just the amplitude of the wave,

1 � 5e � α2 � α � � 1
2 m

ln

�
1
5 
 � 0  81 Np/m.

Problem 1.13 A certain electromagnetic wave traveling in sea water was observed
to have an amplitude of 98.02 (V/m) at a depth of 10 m and an amplitude of 81.87
(V/m) at a depth of 100 m. What is the attenuation constant of sea water?

Solution: The amplitude has the form Aeαz. At z � 10 m,

Ae � 10α � 98  02

and at z � 100 m,
Ae � 100α � 81  87

The ratio gives
e � 10α

e � 100α � 98  02
81  87

� 1  20

or
e � 10α � 1  2e � 100α 

Taking the natural log of both sides gives

ln
�
e � 10α ��� ln

�
1  2e � 100α � �

� 10α � ln
�
1  2 � � 100α �

90α � ln
�
1  2 ��� 0  18 

Hence,

α � 0  18
90

� 2 � 10 � 3 (Np/m) 
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Section 1-5: Complex Numbers

Problem 1.14 Evaluate each of the following complex numbers and express the
result in rectangular form:

(a) z1 � 4e jπ � 3,
(b) z2 ��� 3 e j3π � 4,
(c) z3 � 6e � jπ � 2,
(d) z4 � j3,
(e) z5 � j � 4,
(f) z6 � �

1 � j � 3,
(g) z7 � �

1 � j � 1 � 2.

Solution: (Note: In the following solutions, numbers are expressed to only two
decimal places, but the final answers are found using a calculator with 10 decimal
places.)

(a) z1 � 4e jπ � 3 � 4
�
cos π � 3 	 j sinπ � 3 ��� 2  0 	 j3  46.

(b)

z2 � � 3e j3π � 4 � � 3

�
cos

�
3π
4 
 	 j sin

�
3π
4 
�� � � 1  22 	 j1  22 � 1  22

� � 1 	 j � 
(c) z3 � 6e � jπ � 2 � 6 � cos

� � π � 2 � 	 j sin
� � π � 2 ��� � � j6.

(d) z4 � j3 � j � j2 � � j, or

z4 � j3 � �
e jπ � 2 � 3 � e j3π � 2 � cos

�
3π � 2 � 	 j sin

�
3π � 2 ��� � j 

(e) z5 � j � 4 � �
e jπ � 2 � � 4 � e � j2π � 1.

(f)

z6 � �
1 � j � 3 � � � 2e � jπ � 4 � 3 � � � 2 � 3e � j3π � 4� � � 2 � 3 � cos

�
3π � 4 � � j sin

�
3π � 4 ���� � 2 � j2 � � 2

�
1 	 j � 

(g)

z7 � �
1 � j � 1 � 2 � � � 2e � jπ � 4 � 1 � 2 ��� 21 � 4e � jπ � 8 � � 1  19

�
0  92 � j0  38 �� � � 1  10 � j0  45 � 

Problem 1.15 Complex numbers z1 and z2 are given by

z1 � 3 � j2 �
z2 � � 4 	 j3 
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(a) Express z1 and z2 in polar form.
(b) Find � z1 � by applying Eq. (1.41) and again by applying Eq. (1.43).
(c) Determine the product z1z2 in polar form.
(d) Determine the ratio z1 � z2 in polar form.
(e) Determine z3

1 in polar form.

Solution:
(a) Using Eq. (1.41),

z1 � 3 � j2 � 3  6e � j33 � 7 � �
z2 � � 4 	 j3 � 5e j143 � 1 � 

(b) By Eq. (1.41) and Eq. (1.43), respectively,

� z1 � � � 3 � j2 � ��� 32 	 � � 2 � 2 � � 13 � 3  60 �
� z1 � ��� �

3 � j2 � � 3 	 j2 ��� � 13 � 3  60 
(c) By applying Eq. (1.47b) to the results of part (a),

z1z2 � 3  6e � j33 � 7 � � 5e j143 � 1 � � 18e j109 � 4 � 
(d) By applying Eq. (1.48b) to the results of part (a),

z1

z2
� 3  6e � j33 � 7 �

5e j143 � 1 � � 0  72e � j176 � 8 � 
(e) By applying Eq. (1.49) to the results of part (a),

z3
1 � �

3  6e � j33 � 7 � � 3 � �
3  6 � 3e � j3 � 33 � 7 � � 46  66e � j101 � 1 � 

Problem 1.16 If z � � 2 	 j4, determine the following quantities in polar form:
(a) 1 � z,
(b) z3,
(c) � z � 2,
(d) ���	� z 
 ,
(e) ���	� z ��
 .

Solution: (Note: In the following solutions, numbers are expressed to only two
decimal places, but the final answers are found using a calculator with 10 decimal
places.)



CHAPTER 1 15

(a)

1
z
� 1

� 2 	 j4
� � � 2 	 j4 � � 1 � �

4  47e j116 � 6 � � � 1 � �
4  47 � � 1e � j116 � 6 � � 0  22e � j116 � 6 � 

(b) z3 � � � 2 	 j4 � 3 � �
4  47e j116 � 6 � � 3 � �

4  47 � 3e j350 � 0 � � 89  44e � j10 � .
(c) � z � 2 � z � z � � � � 2 	 j4 � � � 2 � j4 ��� 4 	 16 � 20.
(d) ���	� z 
 � ���	� � 2 	 j4 
 � 4.
(e) ���	� z � 
 � ��� � � 2 � j4 
 � � 4 � 4e jπ.

Problem 1.17 Find complex numbers t � z1 	 z2 and s � z1 � z2, both in polar form,
for each of the following pairs:

(a) z1 � 2 	 j3, z2 � 1 � j3,
(b) z1 � 3, z2 � � j3,
(c) z1 � 3

�
30 � , z2 � 3

� � 30 � ,
(d) z1 � 3

�
30 � , z2 � 3

� � 150 � .

Solution:
(a)

t � z1 	 z2 � �
2 	 j3 � 	 �

1 � j3 ��� 3 �
s � z1 � z2 � �

2 	 j3 � � �
1 � j3 ��� 1 	 j6 � 6  08e j80 � 5 � 

(b)

t � z1 	 z2 � 3 � j3 � 4  24e � j45 � �
s � z1 � z2 � 3 	 j3 � 4  24e j45 � 

(c)

t � z1 	 z2 � 3
�

30 � 	 3
� � 30 �� 3e j30 � 	 3e � j30 � � �

2  6 	 j1  5 � 	 �
2  6 � j1  5 � � 5  2 �

s � z1 � z2 � 3e j30 � � 3e � j30 � � �
2  6 	 j1  5 � � �

2  6 � j1  5 � � j3 � 3e j90 � 
(d)

t � z1 	 z2 � 3
�

30 � 	 3
� � 150 � � �

2  6 	 j1  5 � 	 � � 2  6 � j1  5 ��� 0 �
s � z1 � z2 � �

2  6 	 j1  5 � � � � 2  6 � j1  5 � � 5  2 	 j3 � 6e j30 � 
Problem 1.18 Complex numbers z1 and z2 are given by

z1 � 5
� � 60 � �

z2 � 2
�

45 � 
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(a) Determine the product z1z2 in polar form.
(b) Determine the product z1z �2 in polar form.
(c) Determine the ratio z1 � z2 in polar form.
(d) Determine the ratio z �1 � z �2 in polar form.
(e) Determine � z1 in polar form.

Solution:
(a) z1z2 � 5e � j60 � � 2e j45 � � 10e � j15 � .
(b) z1z �2 � 5e � j60 � � 2e � j45 � � 10e � j105 � .
(c)

z1

z2
� 5e � j60 �

2e j45 � � 2  5 � j105 � .
(d)

z �1
z �2 � �

z1

z2

 � � 2  5 j105 � .

(e) � z1 � � 5e � j60 � � � � 5e � j30 � .
Problem 1.19 If z � 3 � j5, find the value of ln

�
z � .

Solution:

� z � � 	 � 32 	 52 � 5  83 � θ � tan � 1

� � 5
3 
 � � 59 � �

z � � z � e jθ � 5  83e � j59 � �
ln
�
z ��� ln

�
5  83e � j59 � �� ln
�
5  83 � 	 ln

�
e � j59 � �� 1  76 � j59 � � 1  76 � j

59 � π
180 � � 1  76 � j1  03 

Problem 1.20 If z � 3 � j4, find the value of ez.

Solution:

ez � e3 � j4 � e3 � e � j4 � e3 � cos4 � j sin4 � �
e3 � 20  09 � and 4 rad � 4

π
� 180 � � 229  18 � 

Hence, ez � 20  08
�
cos 229  18 � � j sin229  18 � ��� � 13  13 	 j15  20.
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Section 1-6: Phasors

Problem 1.21 A voltage source given by vs
�
t � � 25cos

�
2π � 103t � 30 � � (V) is

connected to a series RC load as shown in Fig. 1-19. If R � 1 MΩ and C � 200 pF,
obtain an expression for vc

�
t � , the voltage across the capacitor.

Solution: In the phasor domain, the circuit is a voltage divider, and

�
Vc � �

Vs
1 � jωC

R 	 1 � jωC
� �

Vs�
1 	 jωRC � 

Now
�
Vs � 25e � j30 � V with ω � 2π � 103 rad/s, so

�
Vc � 25e � j30 � V

1 	 j
� �

2π � 103 rad/s ��� �
106 Ω ��� �

200 � 10 � 12 F � �
� 25e � j30 � V

1 	 j2π � 5 � 15  57e � j81 � 5 � V.

Converting back to an instantaneous value,

vc
�
t ��� ��� �

Vce jωt � ���
15  57e j � ωt � 81 � 5 ��� V � 15  57cos

�
2π � 103t � 81  5 � � V �

where t is expressed in seconds.

Problem 1.22 Find the phasors of the following time functions:
(a) v

�
t ��� 3cos

�
ωt � π � 3 � (V),

(b) v
�
t ��� 12sin

�
ωt 	 π � 4 � (V),

(c) i
�
x � t ��� 2e � 3x sin

�
ωt 	 π � 6 � (A),

(d) i
�
t ��� � 2cos

�
ωt 	 3π � 4 � (A),

(e) i
�
t ��� 4sin

�
ωt 	 π � 3 � 	 3cos

�
ωt � π � 6 � (A).

Solution:
(a)

�
V � 3e � jπ � 3 V.

(b) v
�
t � � 12sin

�
ωt 	 π � 4 � � 12cos

�
π � 2 � �

ωt 	 π � 4 � � � 12cos
�
ωt � π � 4 � V,�

V � 12e � jπ � 4 V.
(c)

i
�
t ��� 2e � 3x sin

�
ωt 	 π � 6 � A � 2e � 3x cos

�
π � 2 � �

ωt 	 π � 6 � � A� 2e � 3x cos
�
ωt � π � 3 � A ��

I � 2e � 3xe � jπ � 3 A 
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(d)

i
�
t ��� � 2cos

�
ωt 	 3π � 4 � ��

I � � 2e j3π � 4 � 2e � jπe j3π � 4 � 2e � jπ � 4 A 
(e)

i
�
t ��� 4sin

�
ωt 	 π � 3 � 	 3cos

�
ωt � π � 6 �� 4cos � π � 2 � �

ωt 	 π � 3 ��� 	 3cos
�
ωt � π � 6 �� 4cos

� � ωt 	 π � 6 � 	 3cos
�
ωt � π � 6 �� 4cos

�
ωt � π � 6 � 	 3cos

�
ωt � π � 6 ��� 7cos

�
ωt � π � 6 � ��

I � 7e � jπ � 6 A 
Problem 1.23 Find the instantaneous time sinusoidal functions corresponding to
the following phasors:

(a)
�
V � � 5e jπ � 3 (V),

(b)
�
V � j6e � jπ � 4 (V),

(c)
�
I � �

6 	 j8 � (A),
(d) Ĩ � � 3 	 j2 (A),
(e) Ĩ � j (A),
(f) Ĩ � 2e jπ � 6 (A).

Solution:
(a)

�
V � � 5e jπ � 3 V � 5e j � π � 3 � π � V � 5e � j2π � 3 V �

v
�
t ��� 5cos

�
ωt � 2π � 3 � V 

(b)
�
V � j6e � jπ � 4 V � 6e j � � π � 4 � π � 2 � V � 6e jπ � 4 V �

v
�
t ��� 6cos

�
ωt 	 π � 4 � V 

(c)
�
I � �

6 	 j8 � A � 10e j53 � 1 � A �
i
�
t ��� 10cos

�
ωt 	 53  1 � � A.

(d)
�
I � � 3 	 j2 � 3  61e j146 � 31 � �

i
�
t ��� ��� � 3  61e j146 � 31 � e jωt 
 � 3  61 cos

�
ωt 	 146  31 � � A 
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(e)
�
I � j � e jπ � 2 �

i
�
t ��� ��� � e jπ � 2e jωt 
 � cos

�
ωt 	 π � 2 ��� � sinωt A 

(f)
�
I � 2e jπ � 6 �

i
�
t ��� ��� � 2e jπ � 6e jωt 
 � 2cos

�
ωt 	 π � 6 � A 

Problem 1.24 A series RLC circuit is connected to a generator with a voltage
vs
�
t ��� V0 cos

�
ωt 	 π � 3 � (V).

(a) Write down the voltage loop equation in terms of the current i
�
t � , R, L, C, and

vs
�
t � .

(b) Obtain the corresponding phasor-domain equation.
(c) Solve the equation to obtain an expression for the phasor current

�
I.

Vs(t)

R L

C

i

Figure P1.24: RLC circuit.

Solution:

(a) vs
�
t ��� Ri 	 L

di
dt 	 1

C

�
i dt 

(b) In phasor domain:
�
Vs � RĨ 	 jωLĨ 	 Ĩ

jωC


(c) Ĩ � �
Vs

R 	 j
�
ωL � 1 � ωC � � V0e jπ � 3

R 	 j
�
ωL � 1 � ωC � � ωCV0e jπ � 3

ωRC 	 j
�
ω2LC � 1 � 

Problem 1.25 A wave traveling along a string is given by

y
�
x � t ��� 2sin

�
4πt 	 10πx � (cm)
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where x is the distance along the string in meters and y is the vertical displacement.
Determine: (a) the direction of wave travel, (b) the reference phase φ0, (c) the
frequency, (d) the wavelength, and (e) the phase velocity.

Solution:
(a) We start by converting the given expression into a cosine function of the form

given by (1.17):

y
�
x � t ��� 2cos � 4πt 	 10πx � π

2
� (cm) 

Since the coefficients of t and x both have the same sign, the wave is traveling in the
negative x-direction.

(b) From the cosine expression, φ0 � � π � 2.
(c) ω � 2π f � 4π,

f � 4π � 2π � 2 Hz 
(d) 2π � λ � 10π,

λ � 2π � 10π � 0  2 m.

(e) up � f λ � 2 � 0  2 � 0  4 (m/s).

Problem 1.26 A laser beam traveling through fog was observed to have an intensity
of 1 (µW/m2) at a distance of 2 m from the laser gun and an intensity of 0.2
(µW/m2) at a distance of 3 m. Given that the intensity of an electromagnetic
wave is proportional to the square of its electric-field amplitude, find the attenuation
constant α of fog.

Solution: If the electric field is of the form

E
�
x � t ��� E0e � αx cos

�
ωt � βx � �

then the intensity must have a form

I
�
x � t ��� � E0e � αx cos

�
ωt � βx ��� 2

� E2
0 e � 2αx cos2 � ωt � βx �

or
I
�
x � t ��� I0e � 2αx cos2 � ωt � βx �

where we define I0 � E2
0 . We observe that the magnitude of the intensity varies as

I0e � 2αx. Hence,

at x � 2 m � I0e � 4α � 1 � 10 � 6 (W/m2) �
at x � 3 m � I0e � 6α � 0  2 � 10 � 6 (W/m2) 
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I0e � 4α

I0e � 6α � 10 � 6

0  2 � 10 � 6 � 5

e � 4α � e6α � e2α � 5

α � 0  8 (NP/m) 
Problem 1.27 Complex numbers z1 and z2 are given by

z1 � � 3 	 j2

z2 � 1 � j2

Determine (a) z1z2, (b) z1 � z �2, (c) z2
1, and (d) z1z �1, all all in polar form.

Solution:
(a) We first convert z1 and z2 to polar form:

z1 � � � 3 � j2 ��� � � � 32 	 22 e � j tan � 1 2 � 3 �� � � 13 e � j33 � 7 �

� � 13 e j � 180 � � 33 � 7 � �

� � 13 e j146 � 3 � 
z2 � 1 � j2 � � 1 	 4 e � j tan � 1 2

� � 5 e � j63 � 4 � 
z1z2 � � 13 e j146 � 3 � � � 5 e � j63 � 4 �

� � 65 e j82 � 9 � 
(b)

z1

z �2 � � 13 e j146 � 3 �� 5 e j63 � 4 �
� �

13
5

e j82 � 9 � 
(c)

z2
1 � � � 13 � 2 � e j146 � 3 � � 2 � 13e j292 � 6 �

� 13e � j360 � e j292 � 6 �

� 13e � j67 � 4 � 
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(d)

z1z �1 � � 13 e j146 � 3 � � � 13 e � j146 � 3 �� 13 
Problem 1.28 If z � 3e jπ � 6, find the value of ez.

Solution:

z � 3e jπ � 6 � 3cos π � 6 	 j3sinπ � 6� 2  6 	 j1  5
ez � e2 � 6 � j1 � 5 � e2 � 6 � e j1 � 5

� e2 � 6 � cos1  5 	 j sin 1  5 �� 13  46
�
0  07 	 j0  98 �� 0  95 	 j13  43 

Problem 1.29 The voltage source of the circuit shown in the figure is given by

vs
�
t ��� 25cos

�
4 � 104t � 45 � � (V) 

Obtain an expression for iL
�
t � , the current flowing through the inductor.

vs(t) L

iR1

R2

iL

A

iR2+

-

R1 = 20 Ω, R2 = 30 Ω, L = 0.4 mH

Solution: Based on the given voltage expression, the phasor source voltage is
�
Vs � 25e � j45 � (V)  (9)

The voltage equation for the left-hand side loop is

R1i 	 R2iR2 � vs (10)
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For the right-hand loop,

R2iR2 � L
diL
dt

� (11)

and at node A,

i � iR2 	 iL  (12)

Next, we convert Eqs. (2)–(4) into phasor form:

R1

�
I 	 R2

�
IR2 � �

Vs (13)

R2

�
IR2 � jωL

�
IL (14)�

I � �IR2 	 �IL (15)

Upon combining (6) and (7) to solve for
�
IR2 in terms of

�
I, we have:

�
IR2 � jωL

R2 	 jωL
I  (16)

Substituting (8) in (5) and then solving for
�
I leads to:

R1

�
I 	 jR2ωL

R2 	 jωL

�
I � �

Vs

�
I

�
R1 	 jR2ωL

R2 	 jωL 
 � �
Vs

�
I

�
R1R2 	 jR1ωL 	 jR2ωL

R2 	 jωL 
 � �
Vs

�
I � �

R2 	 jωL
R1R2 	 jωL

�
R1 	 R2 � 
 �Vs  (17)

Combining (6) and (7) to solve for
�
IL in terms of

�
I gives

�
IL � R2

R2 	 jωL

�
I  (18)

Combining (9) and (10) leads to

�
IL � �

R2

R2 	 jωL 

�

R2 	 jωL
R1R2 	 jωL

�
R1 	 R2 � 
 �Vs

� R2

R1R2 	 	 jωL
�
R1 	 R2 � �Vs 
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Using (1) for
�
Vs and replacing R1, R2, L and ω with their numerical values, we have

�
IL � 30

20 � 30 	 j4 � 104 � 0  4 � 10 � 3
�
20 	 30 � 25e � j45 �

� 30 � 25
600 	 j800

e � j45 �

� 7  5
6 	 j8

e � j45 � � 7  5e � j45 �

10e j53 � 1 �
� 0  75e � j98 � 1 � (A) 

Finally,

iL
�
t ��� ��� � �ILe jωt �� 0  75cos

�
4 � 104t � 98  1 � � (A) 




