Chapter 1: Introduction: Waves and Phasors

Lesson #1

Chapter — Section: Chapter 1
Topics: EM history and how it relates to other fields

Highlights:

EM in Classical era: 1000 BC to 1900

Examples of Modern Era Technology timelines
Concept of “fields” (gravitational, electric, magnetic)

Static vs. dynamic fields
The EM Spectrum

Special Illustrations:
e Timelines from CD-ROM

Timeline for Electromagnetics in the Classical Era

ca. 900 Legend has it that while walking 1752
BC across a field in northern Greece, a

shepherd named Magnus experiences

a pull on the iron nails in his sandals

by the black rock he was standing on.

The region was later named Magnesia

and the rock became known as 1785

magnetite [a form of iron with

permanent magnetism].

ca. 600  Greek philosopher Thales
BC describes how amber,
after being rubbed
with cat fur, can pick
up feathers [static
electricity].

1800

1820

ca. 1000 Magnetic compass used as
a navigational device.

Benjamin Franklin
(American) invents the [
lightning rod and
demonstrates that i
lightning is electricity.

Charles-Augustin de
Coulomb (French) demonstrates that
the electrical force between charges is
proportional to the inverse of the
square of the distance between them.

Alessandro Volta
(Italian) develops the
first electric battery.

Hans Christian Oersted
(Danish) demonstrates the
interconnection between
electricity and magnetism
through his discovery that an electric
current in a wire causes a compass
needle to orient itself perpendicular to
the wire.




Lessons #2 and 3
Chapter — Sections: 1-1to 1-6

Topics: Waves

Highlights:

e Wave properties
e Complex numbers
e Phasors

Special Illustrations:

e C(CD-ROM Modules 1.1-1.9
e CD-ROM Demos 1.1-1.3

Module 1.6: Red Wave in a Lossy Medium

[ Start Animation ) 0:03

10

_ ------ ------- o ------ ------ ------- ----- ------ Do ey e ----- “om

s
| ETT TR T AR |
Q1. What is the wave amplitude?
A: V l’_’check answer'fl l’_'lgi\re U|::n‘_1
Q2. What is the wave frequency? [Use the digital clock to estimate it]
f: HZ I'_'check answer\_l I'_'Igi\re up‘.'l

Q3. What 1s the wavelength?
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Chapter 1

Section 1-3: Traveling Waves

Problem 1.1 A 2-kHz sound wave traveling in the x-direction in air was observed to
have a differential pressure p(x,t) = 10 N/m? at x = 0 and t = 50 ps. If the reference
phase of p(x,t) is 36°, find a complete expression for p(x,t). The velocity of sound
in air is 330 mf/s.

Solution: The general form is given by Eq. (1.17),

2t 21X
t) =Acos [ - — 22
p(x) = Acos (5 -2 ).
where it is given that @y = 36°. From Eq. (1.26), T = 1/f = 1/(2 x 10%) = 0.5 ms.
From Eq. (1.27),

u 330
A=-P=_"_-0.165m.
f = 2x103 m
Also, since
2Tt 50 x 10~6 Ttrad
_ _ _ 2y _ o
p(x=0, t =50 ps) =10 (N/m )_Acos( 5% 103 +36 180°>

= Acos(1.26 rad) = 0.31A,

it follows that A = 10/0.31 = 32.36 N/m?2. So, with t in (s) and x in (m),

t
p(x,t) = 32.36c0s (21 10° 5 — 2mix 103% +36°)  (Nim?)

— 32.36c0s(41x 10% — 12.12mx + 36°)  (N/m?).

Problem 1.2  For the pressure wave described in Example 1-1, plot

(@) p(x,t) versusxatt =0,

(b) p(x,t) versustatx =0.
Be sure to use appropriate scales for x and t so that each of your plots covers at least
two cycles.

Solution: Refer to Fig. P1.2(a) and Fig. P1.2(b).
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Figure P1.2: (a) Pressure wave as a function of distance at t = 0 and (b) pressure
wave as a function of time at x = 0.

Problem 1.3 A harmonic wave traveling along a string is generated by an oscillator
that completes 180 vibrations per minute. If it is observed that a given crest, or
maximum, travels 300 cm in 10 s, what is the wavelength?

Solution:
180
f= w0 - 3 Hz.
300 cm
Up=—"05 = 0.3 m/s.
)\:u—fzoé—szo.lm:lOcm.

Problem 1.4 Two waves, y1(t) and y,(t), have identical amplitudes and oscillate at
the same frequency, but y»(t) leads y;(t) by a phase angle of 60°. If

y1(t) = 4cos(2mx 10%),

write down the expression appropriate for y»(t) and plot both functions over the time
span from O to 2 ms.

Solution:
y2(t) = 4cos(2mx 10% + 60°).
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Figure P1.4: Plots of y4(t) and yx(t).

Problem 1.5 The height of an ocean wave is described by the function
y(x,t) = 1.5sin(0.5t — 0.6x)  (m).

Determine the phase velocity and the wavelength and then sketch y(x,t) att =25
over the range from x =0 to x = 2A.

Solution: The given wave may be rewritten as a cosine function:
y(x,t) = 1.5c0s(0.5t — 0.6x — 11/2).
By comparison of this wave with Eq. (1.32),
y(x,t) = Acos(wt — BX+ @),
we deduce that

w = 2rnf = 0.5 rad/s, B= ZTT[ = 0.6 rad/m,

w 05 2m 2n
up_E_ﬁ_O.BSm/s, )\_F_ﬁ_lo'ﬂm'
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Figure P1.5: Plot of y(x,2) versus X.

Att =25, y(x,2) = 1.5sin(1 — 0.6x) (m), with the argument of the cosine function
given in radians. Plot is shown in Fig. P1.5.

Problem 1.6 A wave traveling along a string in the +x-direction is given by
y1(X,t) = Acos(wt — Bx),

where x = 0 is the end of the string, which is tied rigidly to a wall, as shown in
Fig. 1-21 (P1.6). When wave y1(x,t) arrives at the wall, a reflected wave y,(x,t) is
generated. Hence, at any location on the string, the vertical displacement ys will be
the sum of the incident and reflected waves:

yS(Xat) = yl(Xat) + yZ(Xat)'

(@) Write down an expression for y»(x,t), keeping in mind its direction of travel
and the fact that the end of the string cannot move.

(b) Generate plots of yi(x,t), ya2(x,t) and ys(x,t) versus x over the range
—2A <x<0atwt=T1/4and at wt = 11/2.

Solution:
(a) Since wave y»(x,t) was caused by wave y1(x,t), the two waves must have the
same angular frequency w, and since y,(x,t) is traveling on the same string as y1 (X, t),
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Incident Wave
——

x=0

Figure P1.6: Wave on a string tied to a wall at x = 0 (Problem 1.6).

the two waves must have the same phase constant 3. Hence, with its direction being
in the negative x-direction, y,(x,t) is given by the general form

ya(x,t) = Beos(wt + Bx+ o), @)
where B and @y are yet-to-be-determined constants. The total displacement is
Ys(X,t) = y1(%,t) +y2(x,t) = Acos(wt — Bx) + Bcos(wt + BXx + @p)-

Since the string cannot move at x = 0, the point at which it is attached to the wall,
ys(0,t) = 0 for all t. Thus,

ys(0,t) = Acoswt + B cos(wt + @g) = 0. )

(i) Easy Solution: The physics of the problem suggests that a possible solution for
(2) isB=—Aand @y = 0, in which case we have

y2(x,t) = —Acos(wt + Bx). 3)
(ii) Rigorous Solution: By expanding the second term in (2), we have
Acos wt + B(cos wt cos @ — sin wt sin @) = 0,
or
(A+ Bcosqy) cosuwt — (Bsingp) sinwt = 0. 4)
This equation has to be satisfied for all values of t. Att =0, it gives

A+Bcosq =0, 5)
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and at wt = 11/2, (4) gives
Bsingy =0. 6)
Equations (5) and (6) can be satisfied simultaneously only if
A=B=0 @)
or
A=—-B and @=0. ()]

Clearly (7) is not an acceptable solution because it means that y;(x,t) = 0, which is
contrary to the statement of the problem. The solution given by (8) leads to (3).
(b) At wt = T11/4,

y1(x,t) = Acos(11/4 — Bx) = Acos (g— ZTT[X> ,

y2(x,t) = —Acos(wt + Bx) = —Acos (ng ZTT‘X> ]

Plots of yy, Yo, and y3 are shown in Fig. P1.6(b).

, (et X) $ 15A

wt=174

Figure P1.6: (b) Plots of y1, y2, and ys versus x at wt = 11/4.
Atwt =T11/2,

y1(x,t) = Acos(1/2 — Bx) = AsinBx = Asin ZTTD( ,
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y2(x,t) = —Acos(1/2 4 Bx) = AsinBx = Asin ZTTIX .

Plots of y;, Yo, and y3 are shown in Fig. P1.6(c).
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Figure P1.6: (c) Plots of y1, y2, and ys versus x at wt = 11/2.

Problem 1.7 Two waves on a string are given by the following functions:

y1(x,t) = 4cos(20t — 30x) (cm),
y2(x,t) = —4cos(20t + 30x) (cm),

where X is in centimeters. The waves are said to interfere constructively when their
superposition |ys| = |y1+Y2| is a maximum and they interfere destructively when |ys|
IS a minimum.

(@) What are the directions of propagation of waves y1(x,t) and y2(x,t)?

(b) Att = (11/50) s, at what location x do the two waves interfere constructively,

and what is the corresponding value of |ys|?
(c) Att = (1/50) s, at what location x do the two waves interfere destructively,

and what is the corresponding value of |ys|?

Solution:
(@) ya(x,t) is traveling in positive x-direction. y»(x,t) is traveling in negative
x-direction.
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(b) Att = (11/50) s, ys = Y1+ Y2 = 4[cos(0.411— 30x) — cos(0.411+ 3x)]. Using the
formulas from Appendix C,
2sinxsiny = cos(x —y) — (cosx+Y),
we have
ys = 8sin(0.411) sin 30x = 7.61sin 30X.

Hence,

and it occurs when sin30x = 1, or 30x = g+ 2NTL Or X = (6% + 23%1) cm, where
n=0,1,2,....

. nTt
(€) |yslmin=0and it occurs when 30x = nTt, or x = 0 cm.

Problem 1.8 Give expressions for y(x,t) for a sinusoidal wave traveling along a
string in the negative x-direction, given that yna = 40 cm, A =30 cm, f = 10 Hz,
and

(@) y(x,0) =0atx=0,

(b) y(x,0) =0atx=7.5cm.

Solution: For a wave traveling in the negative x-direction, we use Eq. (1.17) with
w = 2mtf = 201 (rad/s), B = 21/ = 21/0.3 = 2011/3 (rad/s), A = 40 cm, and X
assigned a positive sign:

y(x,t) = 40cos (20T[t + %TX—F q)o) (cm),

with x in meters.
(@) y(0,0) =0=40cosqy. Hence, @y = +11/2, and

y(x,t) = 40cos (20T[[ + ?xi g)
_ [ —40sin (201t + Ay) (cm),  if o =T1/2,
40sin (201t + ") (cm),  if o = —T/2.

(b) Atx=7.5cm=7.5x10"2m, y=0=40c0s(T//2+ @). Hence, g =0or 1,
and

(x1) = 40cos (201t + 2™x) (cm), if o =0,
YU =1 —40cos (20t + &) (cm), if@=TU
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Problem 1.9 An oscillator that generates a sinusoidal wave on a string completes
20 vibrations in 50 s. The wave peak is observed to travel a distance of 2.8 m along
the string in 50 s. What is the wavelength?

Solution:

50 2.8
T:%:ZSS, up:?:0.56m/s,

A=uUpT =0.56x25=14m.

Problem 1.10 The vertical displacement of a string is given by the harmonic

function:
y(x,t) = 6cos(16mt — 20TX) (M),

where X is the horizontal distance along the string in meters. Suppose a tiny particle
were to be attached to the string at x = 5 ¢cm, obtain an expression for the vertical
velocity of the particle as a function of time.

Solution:
y(x,t) = 6cos(161t — 20T%x)  (m).

dy(xt)
dt  |io0s
= 9671sin (16Tt — 20TX) | x=0.05

= 96Ttsin (167t — )
= —967tsin(167t)  (M/s).

u(0.05,t) =

Problem 1.11 Given two waves characterized by
y1(t) = 3cosui,
y2(t) = 3sin(wt + 36°),
does y,(t) lead or lag y1(t), and by what phase angle?
Solution: We need to express y,(t) in terms of a cosine function:
y2(t) = 3sin(wt + 36°)
= 3c0s (g— wt— 36°) = 3c0s(54° — wt) = 3cos(wt —54°).
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Hence, y»(t) lags y1(t) by 54°.

Problem 1.12 The voltage of an electromagnetic wave traveling on a transmission
line is given by v(z,t) = 5e~%sin(41tx 10°% — 201w) (V), where z is the distance in
meters from the generator.

(a) Find the frequency, wavelength, and phase velocity of the wave.

(b) Atz =2 m, the amplitude of the wave was measured to be 1 V. Find a.

Solution:

(a) This equation is similar to that of Eq. (1.28) with w = 41t x 10° rad/s and
B = 20mrad/m. From Eq. (1.293), f = w/2m = 2 x 10° Hz = 2 GHz; from
Eqg. (1.29b), A = 21t/ = 0.1 m. From Eq. (1.30),

Up = w/B=2x 10% ms.

(b) Using just the amplitude of the wave,

-1 1
1="5e ", o= 2m|n(5) 0.81 Np/m.

Problem 1.13 A certain electromagnetic wave traveling in sea water was observed
to have an amplitude of 98.02 (V/m) at a depth of 10 m and an amplitude of 81.87
(V/m) at a depth of 100 m. What is the attenuation constant of sea water?

Solution: The amplitude has the form Ae®?. Atz =10 m,

Ae19 —098.02
and at z= 100 m,
Ae—1%00 — g1 87
The ratio gives
—10a
e _ 98.02 _ 120
e—100a 8187
or
g 100 — 1 D100

Taking the natural log of both sides gives
In(e~10%) = In(1.2¢100%),
—10a = In(1.2) — 100aq,
90a =1In(1.2) =0.18.

Hence, 0.18
= —. = -3 .
a= %0 2x10 (Np/m)
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Section 1-5: Complex Numbers

Problem 1.14 Evaluate each of the following complex numbers and express the
result in rectangular form:

(a) zp = 4el3,

(b) 2o =V/3ePV4,

(©) z3=6e" 12,

d) za=j3,
() z5=j%
(f z6=(1—]))3

@ z7=(1-})"2
Solution: (Note: In the following solutions, numbers are expressed to only two
decimal places, but the final answers are found using a calculator with 10 decimal
places.) _
(a) z1=4el™3 =4(cosT/3+ jsinT/3) = 2.0+ j3.46.
(b)
7, =/3el¥4 = /3 [cos (37") + jsin (37")] = —1.22+ j1.22 = 1.22(—1+j).
(c) z3=6e~ 12 =6[cos(—T/2) + jsin(—11/2)] = — j6.
(d) za=j=j-j?=—jor

€ z5=j4=(elV2) A= 12T=1,

(f)
6= (1— )3 = (V243 = (v/2)3 i34
= (v/2)%[cos(3m/4) — jsin(31/4)]
=—2-j2=-2(1+]).
(9)

77=(1—j)¥2 = (V2e IV4H1/2 = £21/4 =18 — 11.19(0.92 — j0.38)
= +(1.10 — j0.45).

Problem 1.15 Complex numbers z1 and z, are given by

21:3_ 127
Ip = —4-|-j3.
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(a) Express z1 and z, in polar form.

(b) Find |z1| by applying Eq. (1.41) and again by applying Eq. (1.43).
(c) Determine the product z1z, in polar form.

(d) Determine the ratio z;/z, in polar form.

(e) Determine z:f in polar form.

Solution:
(a) Using Eq. (1.41),

721 =3— j2=3.6e71%87

Zp= —4+ j3=5ei14317
(b) By Eq. (1.41) and Eq. (1.43), respectively,

|z1) = |3 j2| = /324 (-2)2 = V13 = 3.60,
21| = /(83— j2)(3+ j2) = V13 = 3.60.

(c) By applying Eq. (1.47b) to the results of part (),
217, = 3607187  5eil431° _ 18010947
(d) By applying Eq. (1.48b) to the results of part (a),

- 0
71 3.6e713%7

. o
Zp  5eis3l’ = 0.72¢7110%.
2 Geils

(e) By applying Eq. (1.49) to the results of part (a),

. 0 3 . 0 . o)
23 = (3.6e71%7 )" = (3.6)% 15T = 46.66e 11011

Problem 1.16 If z= —2+ j4, determine the following quantities in polar form:
(@) 1/z,
(b) 2,
() |z,
(d) Im{z},
(e) Im{z*}.

Solution: (Note: In the following solutions, numbers are expressed to only two
decimal places, but the final answers are found using a calculator with 10 decimal
places.)
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(@)
1 — —
z —2+j4

(b) 22 = (—2+ j4)3 = (4.47e/1186°)3 = (4.47)3e13500" — 89 .44~ 117

©)|z?=2z-7* = (=2 + j4) (=2 — j4) = 4+ 16 = 20.

(d) Im{z} =Im{—2+ j4} =4.

(e) Im{z*} = Im{—2— j4} = —4 = 4el™.

(—2+ j4) 1= (4.47eI1166 )1 — (4 47) 1 11168 — g pp g i1166°

Problem 1.17 Find complex numberst = z1 4z, and s = z1 — 25, both in polar form,
for each of the following pairs:

(@) z1=24]j3, zo=1-j3,

(b) z1=3, =3,

(c) 29 =3430, 2o =330,

(d) 23 =3/30°, 7z, = 3/=150°,

Solution:
@)
t=21+22=(2+]j3)+(1-j3) =3,
s=21-2,=(2+]3) = (1- j3) =1+ j6 = 6.08¢/%°".
(b)
t=2+2=3-j3=4.24¢ 1%
s=171—2=3+ j3=4.24e}%",
(©)

t =2y +2p = 3/30° 4 3/=30°
—=3e/3 1 3730 — (2.6 + j1.5) + (2.6 — j1.5) =5.2,
s=17—12, =3e13 —3e71%" = (2.6+ j1.5) — (2.6 — j1.5) = j3 = 3%,

(d)

t=1214+2p =30 43410 = (2.6+ j1.5)+ (—2.6 — j1.5) =0,
S=271—2p = (2.64 j1.5) — (—2.6 — j1.5) = 5.2+ j3 = 6/,

Problem 1.18 Complex numbers z1 and z, are given by
7y =5/=680°,
2y =2/%5.
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(a) Determine the product z;z, in polar form.
(b) Determine the product z1z5 in polar form.
(c) Determine the ratio z;/z; in polar form.
(d) Determine the ratio z; /z5 in polar form.
(e) Determine /zy in polar form.

Solution: . . .
(@) z12p =5e7 160" x 245" = 10e~ 115",

. .0 .0 . 0

(b) 2123 =5e 180" x 2e 1% =10 1155,

fj600 ) o
© 22 " _j5ins
o 2ei
@ 2= (Z—l) = 2.5/105",

(€) Zi= V5e-i60 — +,/5e~i30",

Problem 1.19 If z=3— j5, find the value of In(z).

Solution:

-5
lz| = +v/324+52=583, B=tan"? <?> = —99°,

7= z7lel® = 5.83¢ 1%,
In(z) = In(5.83e~1%")
— In(5.83) + In(e~15%")

Coo .59°T
=1.76 — j59 _1.76—11800

= 1.76 — j1.03.

Problem 1.20 If z =3 — j4, find the value of eZ.

Solution:
e =e3 14 =ed.e7 14 = e3(cos4 — jsin4),

e3=20.09, and 4rad= %x 180° = 229.18°.

Hence, e* = 20.08(c0s 229.18° — jsin229.18°) = —13.13 + j15.20.
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Section 1-6: Phasors

Problem 1.21 A voltage source given by vs(t) = 25cos(2mx 103t —30°) (V) is
connected to a series RC load as shown in Fig. 1-19. If R =1 MQ and C = 200 pF,
obtain an expression for vc(t), the voltage across the capacitor.

Solution: In the phasor domain, the circuit is a voltage divider, and

G,y YieC Vs
°7 PR+1/juC (14 jwRC)’

Now Vs = 2513 \/ with oo = 271 108 rad/s, so

V. — 25e130° v/
©7 1+ j((2mx 103 rad/s) x (108 Q) x (200 x 10-12 F))
256130 v/ -
1t j2T[/5 15.57e V.

Converting back to an instantaneous value,
Ve(t) = ReVeel™ = 9Re15.57el(@—8L5") v — 15 57 cos (2mx 10% — 81.5°) V,

where t is expressed in seconds.

Problem 1.22 Find the phasors of the following time functions:
(@) v(t) = 3cos(wt —11/3) (V),
(b) v(t) = 12sin(wt +11/4) (V),
(©) i(x,t) = 2e~*sin(wt +T11/6) (A),

(d) i(t) = —2cos(wt +311/4) (A),

() i(t) =4sin(uwt +11/3) + 3cos(wt — 11/6) (A).

Solution:

(@) V=3 1"3V

(b) v(t) = 12sin(wt + 11/4) = 12c0s(11/2 — (Wt + 1/4)) = 12cos (wt — 11/4) V,
V=124V,

(©

i(t) = 2e~sin (wt 4 11/6) A = 2~ cos (T1/2 — (wt +T17/6)) A
= 2e7cos (wt — 11/3) A,

| =2e ¥ I3 A
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(d)

i(t) = —2cos(wt + 311/4),
I = —2e18V4 — 2~ ITeI3W4 _ pe—JV4 A

(€
i(t) = 4sin(wt + 11/3) + 3cos(wt — 11/6)
= 4cos[1/2 — (t + 11/3)] + 3cos(wt — 11/6)
= 4cos(—wt + 11/6) + 3cos(wt — 11/6)
= 4cos(wt — T1/6) + 3cos(wt — 11/6) = 7 cos(wt — 11/6),
I=7e71V6 A,

Problem 1.23 Find the instantaneous time sinusoidal functions corresponding to
the following phasors:

() V = —5elW3 (v),

(b) V = jee 14 (v),

© 1=(6+]j8) (A),

(d) T=-3+j2 (A),
) 1=j (A),
() 1=2ei6 (A).
Solution:
(@)
V = 53\ = 5el(V3-1 \y — 5123/,
v(t) = 5cos (wt — 211/3) V.

(b)

V = jee V4V = gel CVHT2) v = gelV4 v,

v(t) = 6cos (wt + 11/4) V.
(©)
T=(6+j8) A=10ei532 A,
i(t) =10cos (wt +53.1°) A.

(d)

I'=—3+ j2=3.61e/4631"
i(t) = Me{3.61e/1963"J) — 3 61 cos(wt + 146.31°) A.
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()
r: J = ejT[/Z’
i(t) = Re{eW2eI™} = cos(wt + 11/2) = —sinwt A.
)
= 216,

I
i(t) = Re{2e/V6eI¥} = 2cos(wt 4 T1/6) A.

Problem 1.24 A series RLC circuit is connected to a generator with a voltage
vs(t) = Vocos(uwt + 11/3) (V).
(@) Write down the voltage loop equation in terms of the current i(t), R, L, C, and
vs(t).
(b) Obtain the corresponding phasor-domain equation.
(c) Solve the equation to obtain an expression for the phasor current .

R L
Wy TN—

V(t) ’9 =C

Figure P1.24: RLC circuit.

Solution: di 1
) i .
(@) vs(t)=Ri+ La +6/Idt'

.~ e e
(b) In phasor domain: Vs = Rl + jwLI + o

© = Vs _ Voel™® _ GCVeelm3
T R¥j(W—1/uC) R+j(wl—1/uC) WRC+j(WLC—1)°

Problem 1.25 A wave traveling along a string is given by

y(x,t) = 2sin(4mt + 10Tx)  (cm)
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where x is the distance along the string in meters and y is the vertical displacement.
Determine: (@) the direction of wave travel, (b) the reference phase @g, (c) the
frequency, (d) the wavelength, and (e) the phase velocity.

Solution:
(a) We start by converting the given expression into a cosine function of the form
given by (1.17):

y(x,t) = 2cos (4nt +10Tx — g) (cm).

Since the coefficients of t and x both have the same sign, the wave is traveling in the
negative x-direction.
(b) From the cosine expression, @y = —T1/2.
(c) w=2mf =4m,
f =4m/2n=2Hz.

(d) 2ryA = 101,
A =21/10m=0.2 m.

(&) up= fA=2x0.2=0.4 (m/s).

Problem 1.26 A laser beam traveling through fog was observed to have an intensity
of 1 (UW/m?) at a distance of 2 m from the laser gun and an intensity of 0.2
(MW/m?) at a distance of 3 m. Given that the intensity of an electromagnetic
wave is proportional to the square of its electric-field amplitude, find the attenuation
constant a of fog.

Solution: If the electric field is of the form
E(x,t) = Ege~ ™ cos(wt — Bx),
then the intensity must have a form
1(x,t) =~ [Ege~ cos(t — Bx)]?
~ E2e 2™ cos?(wt — BX)

or
I(x,t) = loe ?** cos?(wt — BX)
where we define lp = Eg. We observe that the magnitude of the intensity varies as
lpe 2%, Hence,
atx=2m, lpe™® =1x10"% (W/m?),
atx=3m, lge™®=02x10"% (Wim?).
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le™ 107
lpe=6@  0.2x106
e~ . gb0 —g20 _ g

a=0.8 (NP/m).

Problem 1.27 Complex numbers z;1 and z, are given by
71 = -3+ j2
=1— j2
Determine (a) z12o, (b) z1/25, (C) 2, and (d) z1z3, all all in polar form.

Solution:
(a) We first convert z; and z, to polar form:

21=—(3-j2)=— (\/32+722 e*jtanflz/3)
_ _ /T3 BT
_ /13 ei(180°-337°)
_ /1361463

Zy=1—j2=+1tde a2
_ /5o 634

212, = /13 ej146.3° % \/g e—j63.4°
_ VB5 el

(b)

a_ V13 el1463 _ 13 gie2e
75 \/5ei63 5 ’
©

Z% — (\/E)Z(ejl46.3°)2 — 13ej292.6°
— 13e—j360°ej292.6°

= 13e~ 1974,
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(d)

212} = V/13 @116 5 /13 ¢~ 11463
=13.

Problem 1.28 If z = 3ei™® find the value of e?.

Solution:
z = 3el® = 3cosT1/6 + j3sinTI/6
—26+jL5

26+]L5 _ 026 3 jLl5

ef=e
=e2%(cos1.5+ jsin1.5)
— 13.46(0.07 + j0.98)

=0.95+ j13.43.

Problem 1.29 The voltage source of the circuit shown in the figure is given by
vs(t) = 25c0s(4 x 10% —45°) (V).

Obtain an expression for iy (t), the current flowing through the inductor.

AM———2 .
+ Ir 2 L

vs(t) ’\) R L

R1=20Q,R,=30Q,L=04mH

Solution: Based on the given voltage expression, the phasor source voltage is
Vs=25e714" (V). 9)
The voltage equation for the left-hand side loop is

Ryi+ Raig, = Vs (10)
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For the right-hand loop,
. di_
Rolr, = LW )
and at node A,
i =ir, +iL.

Next, we convert Egs. (2)—(4) into phasor form:

Rl +Ralg, = Vs
Rolg, = jowLlI,
T=Tg,+1L

Upon combining (6) and (7) to solve for Ig, in terms of I, we have:

~ jwb
R2 ™ Ryt juL

Substituting (8) in (5) and then solving for I leads to:

JRowL ~ ~
L= 1=V
R+ jol S

~ ij(x)L 7
'iv R1R2+ JR]_(A)L"‘ JRZ(JJL _v
R+ jol s

Ryl +

~ \RiRo+ jwL(R1+Ry) ) %
Combining (6) and (7) to solve for 1, in terms of I gives

=2
T Ryt jol

Combining (9) and (10) leads to
" \Ret+jwL/) \RiRo+ joL(Ri+Rp) ) °

R ~
— 2 V.
RiR2++jwL(R1+R2)

23

(11)

(12)

(13)
(14)
(15)

(16)

17

(18)
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Using (1) for Vs and replacing Ry, R, L and w with their numerical values, we have

N 30

L= :

LT 20x 30+ j4 x 107 x 0.4 x 10-3(20+ 30)
0x25 i

25~ 145

~ 600+ j800
75 e 7.5e71% 0810
=" o 075 1B (A).
6+ 8 106157 ¢ )
Finally,
iL(t) = Re[l eI

=0.75c0s(4 x 10t —98.1°)  (A).





