Introduction

1. Vectors:

- $\mathbf{A}=\hat{a}|\mathbf{A}| \rightarrow a=\frac{\mathbf{A}}{|\mathrm{A}|}=\frac{\mathbf{A}}{A}=\frac{\hat{x} A_{x}+\hat{y} A_{y}+\hat{z} A_{z}}{\sqrt{A_{x}^{2}+A_{y}^{2}+A_{z}^{2}}}$
- $\mathbf{A}+\mathbf{B}=\mathbf{C}$

- Scalar or (\bullet) product: $\mathbf{A} \cdot \mathbf{B}=A B \cos \theta_{A B}$, where θ is measured between vectors tails.
(\bullet) is >0 if $0 \leq \theta_{A B}<90^{\circ}$
(\bullet) is <0 if $90<\theta_{A B} \leq 180^{\circ}$

- $\hat{x} \cdot \hat{x}=\hat{y} \cdot \hat{y}=\hat{z} \cdot \hat{z}=1$
$\hat{x} \cdot \hat{y}=\hat{y} \cdot \hat{z}=\hat{z} \cdot \hat{x}=0$
- Vector or (\times) product.
$\mathbf{A} \times \mathbf{B}=\hat{n} A B \sin \theta_{A B}$

- \hat{n} direction: when the fingers of the right hand rotate from \mathbf{A} to \mathbf{B}; the thumb indicates $\mathbf{A} \times \mathbf{B}$.
- $\mathbf{A} \times \mathbf{B}=\left|\begin{array}{ccc}\hat{x} & \hat{y} & \hat{z} \\ A_{x} & A_{y} & A_{z} \\ B_{x} & B_{y} & B_{z}\end{array}\right|$

2. Cartesian coordinate system:

Parameters: $\mathrm{x}, \mathrm{y}, \mathrm{z}$
$\hat{x}, \hat{y}, \hat{z}$

$$
d \mathrm{l}=\hat{x} d l_{x}+\hat{y} d l_{y}+\hat{z} d l_{z}=\hat{x} d x+\hat{y} d y+\hat{z} d z
$$

Where d l is the differential length, while $d s$ is the differential surface (with $\overrightarrow{d s_{x}}, \overrightarrow{d s_{y}}$ and $\overrightarrow{d s_{z}}$) and $d v=d x d y d z$ is the differential volume.

3. Cylindrical coordinate system:

Parameters: $\mathrm{r}, \varphi, \mathrm{z}$

$$
\vec{r}, \vec{\phi}, \vec{z}
$$

$$
\begin{aligned}
d l_{r} & \rightarrow d r \\
d l_{\phi} & \rightarrow r d \phi \\
d l_{z} & \rightarrow d z
\end{aligned}
$$

Thus:

$$
d \mathrm{l}=\hat{r} d l_{r}+\hat{\phi} d l_{\phi}+\hat{z} d l_{z}=\hat{r} d r+\hat{\phi} d \phi+\hat{z} d z
$$

So we have:

$$
\begin{aligned}
& d s_{r}=\hat{\mathbf{r}} r d \phi d z \\
& d s_{\phi}=\hat{\phi} d r d z \\
& d s_{z}=\hat{\mathbf{z}} r d r d \phi \\
& d v=r d r d \phi d z
\end{aligned}
$$

4. Spherical coordinate system:

Parameters: R, θ, ϕ

$$
\begin{aligned}
& \vec{R}, \vec{\theta}, \vec{\phi} \\
& d l_{R} \rightarrow d R \\
& d l_{\theta} \rightarrow R d \theta \\
& d l_{\phi} \rightarrow R \sin \theta d \phi
\end{aligned}
$$

$$
\begin{aligned}
d \mathrm{l} & =\hat{R} d l_{R}+\hat{\theta} d l_{\theta}+\hat{\phi} d l_{\phi} \\
& =\hat{R} d R+\hat{\theta} R d \theta+\hat{\phi} R \sin \theta d \phi
\end{aligned}
$$

	Cartesian Coordinates	Cylindrical Coordinates	Spherical Coordinates
Coordinate variables	x, y, z	r, ϕ, z	R, θ, ϕ
Vector representation, $\mathbf{A}=$	$\hat{\mathbf{x}} A_{x}+\hat{\mathbf{y}} A_{y}+\hat{\mathbf{z}} A_{z}$	$\hat{\mathbf{r}} A_{r}+\hat{\phi} A_{\phi}+\hat{\mathbf{z}} A_{z}$	$\hat{\mathbf{R}} A_{R}+\hat{\theta} A_{\theta}+\hat{\boldsymbol{\phi}} A_{\phi}$
Magnitude of $\mathrm{A},\|A\|^{\circ}=$	$\sqrt{A_{x}^{2}+A_{y}^{2}+A_{z}^{2}}$	$\sqrt[+]{A_{r}^{2}+A_{\phi}^{2}+A_{z}^{2}}$	$\sqrt[+]{A_{R}^{2}+A_{\theta}^{2}+A_{\phi}^{2}}$
Position vector $\overrightarrow{O P_{1}}=$	$\begin{aligned} & \hat{\mathbf{x}} x_{1}+\hat{\mathbf{y}} y_{1}+\hat{\mathbf{z}} z_{1}, \\ & \text { for } P\left(x_{1}, y_{1}, z_{1}\right) \\ & \hline \end{aligned}$	$\begin{gathered} \hat{\mathbf{r}} r_{1}+\hat{\mathbf{z}} z_{1}, \\ \text { for } P\left(r_{1}, \phi_{1}, z_{1}\right) \end{gathered}$	$\begin{gathered} \hat{\mathbf{R}} R_{1}, \\ \text { for } P\left(R_{1}, \theta_{1}, \phi_{1}\right) \\ \hline \end{gathered}$
Base vectors properties	$\begin{aligned} & \hat{\mathbf{x}} \cdot \hat{\mathbf{x}}=\hat{\mathbf{y}} \cdot \hat{\mathbf{y}}=\hat{\mathbf{z}} \cdot \hat{\mathbf{z}}=1 \\ & \hat{\mathbf{x}} \cdot \hat{\mathbf{y}}=\hat{\mathbf{y}} \cdot \hat{\mathbf{z}}=\hat{\mathbf{z}} \cdot \hat{\mathbf{x}}=0 \\ & \hat{\mathbf{x}} \times \hat{\mathbf{y}}=\hat{\mathbf{z}} \\ & \hat{\mathbf{y}} \times \hat{\mathbf{z}}=\hat{\mathbf{x}} \\ & \hat{\mathbf{z}} \times \hat{\mathbf{x}}=\hat{\mathbf{y}} \end{aligned}$	$\begin{aligned} \hat{\mathbf{r}} \cdot \hat{\mathbf{r}}=\hat{\phi} \cdot \hat{\phi}=\hat{\mathbf{z}} \cdot \hat{\mathbf{z}}=1 \\ \hat{\mathbf{r}} \cdot \hat{\phi}=\hat{\phi} \cdot \hat{\mathbf{z}}=\hat{\mathbf{z}} \cdot \hat{\mathbf{r}}=0 \\ \hat{\mathbf{r}} \times \hat{\phi}=\hat{\mathbf{z}} \\ \hat{\phi} \times \hat{\mathbf{z}}=\hat{\mathbf{r}} \\ \hat{\mathbf{z}} \times \hat{\mathbf{r}}=\hat{\phi} \end{aligned}$	$\begin{aligned} \hat{\mathbf{R}} \cdot \hat{\mathbf{R}}=\hat{\theta} \cdot \hat{\theta}=\hat{\phi} \cdot \hat{\phi}=1 \\ \hat{\mathbf{R}} \cdot \hat{\theta}=\hat{\theta} \cdot \hat{\phi}=\hat{\phi} \cdot \hat{\mathbf{R}}=0 \\ \hat{\mathbf{R}} \times \hat{\theta}=\hat{\phi} \\ \hat{\theta} \times \hat{\phi}=\hat{\mathbf{R}} \\ \hat{\phi} \times \hat{\mathbf{R}}=\hat{\theta} \end{aligned}$
Dot product, $\mathrm{A} \cdot \mathrm{B}=$	$A_{x} B_{x}+A_{y} B_{y}+A_{z} B_{z}$	$A_{r} B_{r}+A_{\phi} B_{\phi}+A_{z} B_{z}$	$A_{R} B_{R}+A_{\theta} B_{\theta}+A_{\phi} B_{\phi}$
Cross product, $\mathrm{A} \times \mathrm{B}=$	ccc $\left.\begin{array}{ccc}\hat{\mathbf{x}} & \hat{\mathbf{y}} & \hat{\mathbf{z}} \\ A_{x} & A_{y} & A_{z} \\ B_{x} & B_{y} & B_{z}\end{array} \right\rvert\,$	$\left\|\begin{array}{ccc}\hat{\mathbf{r}} & \hat{\boldsymbol{\phi}} & \hat{\mathbf{z}} \\ A_{r} & A_{\phi} & A_{z} \\ B_{r} & B_{\phi} & B_{z}\end{array}\right\|$	$\left\|\begin{array}{ccc}\hat{\mathbf{R}} & \hat{\boldsymbol{\theta}} & \hat{\boldsymbol{\phi}} \\ A_{R} & A_{\theta} & A_{\phi} \\ B_{R} & B_{\theta} & B_{\phi}\end{array}\right\|$
Differential length, $d \mathbf{l}=$	$\hat{\mathbf{x}} d x+\hat{\mathbf{y}} d y+\hat{\mathbf{z}} d z$	$\hat{\mathbf{r}} d r+\hat{\boldsymbol{\phi}} r d \phi+\hat{\mathbf{z}} d z$	$\hat{\mathbf{R}} d R+\hat{\theta} R d \theta+\hat{\boldsymbol{\phi}} R \sin \theta d \phi$
Differential surface areas	$\begin{aligned} & d \mathbf{s}_{x}=\hat{\mathbf{x}} d y d z \\ & d \mathbf{s}_{y}=\hat{\mathbf{y}} d x d z \\ & d \mathbf{s}_{z}=\hat{\mathbf{z}} d x d y \end{aligned}$	$\begin{aligned} d \mathbf{s}_{r} & =\hat{\mathbf{r}} r d \phi d z \\ d \mathbf{s}_{\phi} & =\hat{\phi} d r d z \\ d \mathbf{s}_{z} & =\hat{\mathbf{z}} r d r d \phi \end{aligned}$	$\begin{aligned} d \mathbf{s}_{R} & =\hat{\mathbf{R}} R^{2} \sin \theta d \theta d \phi \\ d \mathbf{s}_{\theta} & =\hat{\theta} R \sin \theta d R d \phi \\ d \mathbf{s}_{\phi} & =\hat{\phi} R d R d \theta \end{aligned}$
Differential volume, $d v=$	$d x d y d z$	$r d r-d \phi d z$	$R^{2} \sin \theta d R d \theta d \phi$

Transformation	Coordinate Variables	Unit Vectors	Vector Components
Cartesian to cylindrical	$\begin{aligned} & r=\sqrt[+]{x^{2}+y^{2}} \\ & \phi=\tan ^{-1}(y / x) \\ & z=z \end{aligned}$	$\begin{aligned} & \hat{\mathbf{r}}=\hat{\mathbf{x}} \cos \phi+\hat{\mathbf{y}} \sin \phi \\ & \hat{\boldsymbol{\phi}}=-\hat{\mathbf{x}} \sin \phi+\hat{\mathbf{y}} \cos \phi \\ & \hat{\mathbf{z}}=\hat{\mathbf{z}} \end{aligned}$	$\begin{aligned} & A_{r}=A_{x} \cos \phi+A_{y} \sin \phi \\ & A_{\phi}=-A_{x} \sin \phi+A_{y} \cos \phi \\ & A_{z}=A_{z} \end{aligned}$
Cylindrical to Cartesian	$\begin{aligned} & x=r \cos \phi \\ & y=r \sin \phi \\ & z=z \end{aligned}$	$\begin{aligned} & \hat{\mathbf{x}}=\hat{\mathbf{r}} \cos \phi-\hat{\phi} \sin \phi \\ & \hat{\mathbf{y}}=\hat{\mathbf{r}} \sin \phi+\hat{\phi} \cos \phi \\ & \hat{\mathbf{z}}=\hat{\mathbf{z}} \end{aligned}$	$\begin{aligned} & A_{x}=A_{r} \cos \phi-A_{\phi} \sin \phi \\ & A_{y}=A_{r} \sin \phi+A_{\phi} \cos \phi \\ & A_{z}=A_{z} \end{aligned}$
Cartesian to spherical	$\begin{aligned} & R=\sqrt[+]{x^{2}+y^{2}+z^{2}} \\ & \theta=\tan ^{-1}\left[\sqrt[+]{x^{2}+y^{2}} / z\right] \\ & \phi=\tan ^{-1}(y / x) \end{aligned}$	$\begin{aligned} \hat{\mathbf{R}}= & \hat{\mathbf{x}} \sin \theta \cos \phi \\ & \quad+\hat{\mathbf{y}} \sin \theta \sin \phi+\hat{\mathbf{z}} \cos \theta \\ \hat{\boldsymbol{\theta}}= & \hat{\mathbf{x}} \cos \theta \cos \phi \\ & \quad+\hat{\mathbf{y}} \cos \theta \sin \phi-\hat{\mathbf{z}} \sin \theta \\ \hat{\boldsymbol{\phi}}= & -\hat{\mathbf{x}} \sin \phi+\hat{\mathbf{y}} \cos \phi \end{aligned}$	$\begin{aligned} A_{R}= & A_{x} \sin \theta \cos \phi \\ & +A_{y} \sin \theta \sin \phi+A_{z} \cos \theta \\ A_{\theta}= & A_{x} \cos \theta \cos \phi \\ & +A_{y} \cos \theta \sin \phi-A_{z} \sin \theta \\ A_{\phi}= & -A_{x} \sin \phi+A_{y} \cos \phi \end{aligned}$
Spherical to Cartesian	$\begin{aligned} & x=R \sin \theta \cos \phi \\ & y=R \sin \theta \sin \phi \\ & z=R \cos \theta \end{aligned}$	$\begin{aligned} \hat{\mathbf{x}}= & \hat{\mathbf{R}} \sin \theta \cos \phi \\ & \quad+\hat{\theta} \cos \theta \cos \phi-\hat{\boldsymbol{\phi}} \sin \phi \\ \hat{\mathbf{y}}= & \hat{\mathbf{R}} \sin \theta \sin \phi \\ \quad & \quad+\hat{\theta} \cos \theta \sin \phi+\hat{\boldsymbol{\phi}} \cos \phi \\ \hat{\mathbf{z}}= & \hat{\mathbf{R}} \cos \theta-\hat{\theta} \sin \theta \end{aligned}$	$\begin{aligned} A_{x}= & A_{R} \sin \theta \cos \phi \\ & +A_{\theta} \cos \theta \cos \phi-A_{\phi} \sin \phi \\ A_{y}= & A_{R} \sin \theta \sin \phi \\ & +A_{\theta} \cos \theta \sin \phi+A_{\phi} \cos \phi \\ A_{z}= & A_{R} \cos \theta-A_{\theta} \sin \theta \end{aligned}$
Cylindrical to spherical	$\begin{aligned} & R=\sqrt[+]{r^{2}+z^{2}} \\ & \theta=\tan ^{-1}(r / z) \\ & \phi=\phi \end{aligned}$	$\begin{aligned} & \hat{\mathbf{R}}=\hat{\mathbf{r}} \sin \theta+\hat{\mathbf{z}} \cos \theta \\ & \hat{\boldsymbol{\theta}}=\hat{\mathbf{r}} \cos \theta-\hat{\mathbf{z}} \sin \theta \\ & \hat{\boldsymbol{\phi}}=\hat{\boldsymbol{\phi}} \end{aligned}$	$\begin{aligned} & A_{R}=A_{r} \sin \theta+A_{z} \cos \theta \\ & A_{\theta}=A_{r} \cos \theta-A_{z} \sin \theta \\ & A_{\phi}=A_{\phi} \end{aligned}$
Spherical to cylindrical	$\begin{aligned} & r=R \sin \theta \\ & \phi=\phi \\ & z=R \cos \theta \end{aligned}$	$\begin{aligned} & \hat{\mathbf{r}}=\hat{\mathbf{R}} \sin \theta+\hat{\boldsymbol{\theta}} \cos \theta \\ & \hat{\boldsymbol{\phi}}=\hat{\boldsymbol{\phi}} \\ & \hat{\mathbf{z}}=\hat{\mathbf{R}} \cos \theta-\hat{\boldsymbol{\theta}} \sin \theta \end{aligned}$	$\begin{aligned} & A_{r}=A_{R} \sin \theta+A_{\theta} \cos \theta \\ & A_{\phi}=A_{\phi} \\ & A_{z}=A_{R} \cos \theta-A_{\theta} \sin \theta \end{aligned}$

5. Gradient of scalar field:

The gradient operator has no physical meaning by itself. It attains its physical meaning once it operates on a scalar physical quantity. The result of operation is a vector whose magnitude is equal to the maximum rate of change per unit distance and its direction is along the direction of maximum increase (ex. Temp vs. Height)
$T \rightarrow f(Z)$
if $T=f(x, y, z)$
$\Rightarrow d T=\frac{\partial T}{\partial x} d x+\frac{\partial T}{\partial y} d y+\frac{\partial T}{\partial z} d z$
$\bullet \hat{=} \hat{x} \frac{\partial}{\partial x}+\hat{y} \frac{\partial}{\partial y}+\hat{z} \frac{\partial}{\partial z}$

- Cylindrical coodinate system : $\nabla \hat{=} \hat{r} \frac{\partial}{\partial r}+\hat{\phi} \frac{\partial}{\partial \phi}+\hat{z} \frac{\partial}{\partial z}$
- Spherical coodinate system : $\nabla \hat{=} \hat{R} \frac{\partial}{\partial R}+\hat{\theta} \frac{1}{R} \frac{\partial}{\partial \theta}+\hat{\phi} \frac{1}{R \sin \theta} \frac{\partial}{\partial \phi}$

6. Divergence:

- $\nabla . \mathrm{E}=\frac{\partial E_{x}}{\partial x}+\frac{\partial E_{y}}{\partial y}+\frac{\partial E_{z}}{\partial z}=\operatorname{div} \mathrm{E}$
- $\oint_{S} \mathrm{E} \cdot d s=(\nabla \cdot \mathrm{E}) \Delta v$

Definition: the flux of a vector field is analogous to the flow of an incompressible fluid such as water. For a volume with an enclosed surface, there will be an excess of outward or inward flow through the surface only when the volume contains a source or a sink respectively.

$$
\begin{aligned}
& \operatorname{div} \succ 0 \rightarrow \exists \text { source of fluid inside the volume } \\
& \operatorname{div} \prec 0 \rightarrow \exists \operatorname{sink} \\
& \operatorname{div}=0 \rightarrow \text { uniform field }: \text { in }=\text { out }
\end{aligned}
$$

7. Curl of a vector field:

The curl of B describes the rotational property or the circulation of B.

(a) Uniform field

Circulation is zero for the uniform field in (a), but it is not zero for the azimuthal field in (b).

(b) Azimuthal field

Circulation of $\mathrm{B}=\oint_{c}^{\mathrm{B}} . d \mathrm{l}$
The circulation of a uniform field $=0$.
$\nabla \times \mathrm{B}=\left|\begin{array}{ccc}\hat{x} & \hat{y} & \hat{z} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ B_{x} & B_{y} & B_{z}\end{array}\right|$

8. Stokes's Theorem:

$$
\int_{S}(\nabla \times \mathrm{B}) \cdot d s=\oint_{C} \mathrm{~B} \cdot d \mathrm{l}
$$

