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INSTRUCTIONS

12 questions 10 points each. No rise, no curve,
Programmable Calculators are not allowed

Use pencil to write on your answer sheet.

When using eraser, be sure that you have erased well.

Cellular phones ate strictly forbidden in the exam room.



{In all problems below take g,=1 0-9/3 6 75}

I. A cube 2 m on a side with 2 of its sides parallel to the x-y plane of Cartesian
coordinates system, and its center located at the origin. Find the total charge

contained in the cube if the charge density is given by p‘,=x4y"cos(z7r/5) (C/m?).

(show your work) \

S\)

Find the total charge on a circular disk defined by r < a and z=0, given that:

P=pso €' (C/m’) where py,=4nC/m?, and a the radius of the disk is 50cm. (show
your work)
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3. Find the total charge contained in a cone defined by R<3m and 0<8<n/4, given
that p,=20R%cos’ @ (nC/m”). '
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Three point charges, each with g=9nC, are located at the corners of a triangle in
the x-y plane, with one corner at the origin, another at (2cm, 0, 0), and the third at
(0, 2cm, 0). Express the vector force acting on the charge located at the origin.
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5. Express Maxwell’s equations for the static electric field both in their differential
forms and their integral forms.

6. A thin circular ring with a radius = r; and a total charge Q; uniformly distributed
is placed on the -x, -y plane with it center at the origin. Another thin circular ring
with a radius = 1, and a total charge Q, uniformly distributed is placed on the -x, -
y plane with its center also at the origin. Assume that r2>1;, find the vector E in

the point (0,0,d). .
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7. Determine the electric potential in the point (0,0,d) of the previo
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Problem

8. Calculate the total capacitance in pF of a thin square metal plate of Im side,
placed at h=10cm above an infinite conductive plane coincident to x-y plane.

(neglect the fringing effects)

9. Calculate the values of the voltage on the top plate and the energy stored in the
capacitor when a total charge of InC is stored on the top plate. Express the

voltage in the region between the plates.
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10. Calculate the magnitude and direction of the electric field in the region between
the plates
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I1.If half the area of the top plate rests on a material with a relative dielectric
constant & = 4 and this region is called region 1, while the other half of the top
plate is suspended over the air, and this region is called region 2. Sketch the new
capacitor and determine the ratio of the electric flux densities in the two regions.
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12. Calculate the total energy stored in the new capacitor if 1nC is stored on

the top
plate.
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rCoordinate variables f
- i

| Vector representation, A —

XA, +y4,, +ZA,

Magnitude of A, [A] =

_(}5/4(/,

+ 42 A2 2
[A% + A3+ A2

RA R0 Ag 4
R A T

Position vector 0 5, = Rxy -+ §yy + 2z, Bry + 2z, RRy,
. for P(xy, yy, z;) for P(ry, ¢y, 21) for P(Ry, 6y, ¢y)
Base vectors properties 2R=§F=5-3=1 Pt=d-d=%5=1 :-f{:é-éﬁ‘:q%@):l
i=F-2=%-%=0 tp=¢-2=3.7t=0Q RO=0-p=¢g-R=0
IxXy=2 ‘ Txgp=3 Rx8=¢
Ixi=7% $xi=r x¢=R
PxR=7§ ExF=4 ¢ xR=4
Dot product, A - B = Ax By + A, By +A.B. | A.B, + AgBy + A.B. ApBp - Ay By + Ag By
oy 3 Pog 3 R 6§
Cross product, A x B — Ar AL A Ar Ay A Ap Ay Ap
By By, B B, By B. Br Be By

Differential length, dI =

Xdx +§dy+2dz

Pdr+grdp+id: | RdR+6R do @R sinG dep

Differential surface areas

v
y

dsp =RRsing o dep
dsy =G Rsinf dR dg
dsy =R dR do

dsy =Rdydz
dsy =§dx dz
ds; =%Zdxdy

dsy =Trdgd;
dsy = qﬂﬁ drdz
ds; =2rdrdg

Differential volume, dv —

dx dydz

rdrdpdsz R%sin@ dR de de

< @

Table 2-

Z: Coordinate transfor mation relations.

Coordinate Variables

Unit Vectors

L |

Vector Components

spherical

¢ =tan~!(y/x)
X = Rsinfcosgp

Spherical to
Cartesian

0 =tan~'[ 35T 137

Cartesian to r=x21,2 2 I =ZXcos¢ + Jsin ] Ar = Accosg + Aysing j
cylindrical ¢ = tan"!(y/x) ¢ = —%sin & +Fcosg Ap = —Aysing + Aycosg
: = Z = z = A:
Cylindrical to X = rcos ¢ R =TFcosp — dsing Av = Arcos¢ — Aysing
Cartesian Y =rsing y=Fsing +¢cos o} Ay = A, sing + Ay cos g
I=7z =73 Ar = A
—
Cartesian to R= R =Zsinfcosg¢ AR = Ay singcos ¢

+Jsin@sing + 3cos +Aysindsing + 4. cos@

6 = %cosd Cos ¢ Ap = A, cosf cog b
) +Jcossing — zsing T AycosOsing — A-ging
¢ = —ising + jcosg Ag = —Aysing + Ay cos g

Ay = Agsinf cos ¢

—(jﬂ)sin(/)

-+ Apcosf cas g — Ay sing

—;—9cos€cos¢)

Y= Rsinfsing ¥ =Rsinbsing Ay = Apsindsing
+§cos€sin¢+qn5cosd) +Agc0355in(/)+A¢cosd)

2:§cos@——§sin6’ A: = Apcos@ — Agsind

- Cylindrical to R = YT 2 R=r sinf + Zcos 8 Ar = Arsing + A_cosd

spherical 0 =tan™!(r/z) 0 =tcosd — zsing = A, co50 — 4. sind
b=¢ $=9 [ A=4y

'pherical to = Rsing f=Rsing +8cosd Ay =Apsing + Ay cos @
eylindrical ; b= Ag = Ay

2=Rcos@ — 8 sing A: = Apcosd — 4 Apsing
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CARTESIAN (RE T/-\NGUI/*H) COORDIN.ATES (x, vy, -

_ Jvoov v
TR S A X
oI T T
Tt s E)—— ('1_“\'.
el L»‘_ 1)

dr dv oz

A Ay A
a 2y 4
V-V o= d \7 ,Fi\ﬁ. ; r_ =
d? oo -

!L CYLINDRICAL COQRDINATES {r, 0, z] — —
Y A T - e
Vi = fe 25 =
Yar L o l”Zd:'
I o I oA dA
VoA = - IR | e
; I a,( T Iz
Y TR
1lag o 0 S P & L - X N B a4,
VA = - - =~ —|=f{- 25— 1= g (VIS uR B N i
! sl dr g o ! ( rop ) (Il( dzar ) T [E)/'(l o) E}q;_]
Ay Ay A,
2y LA avy 1Y v
vvos >( o )“'aTT
‘L SPHERICAL COORDINATES (R, 0, ¢)
I I | 1Y )
VY = - )
VW= Rgp b g i'mm@ BT
VoA = ! a/ﬂ‘\w L (\HI@) —'—a""'
= ﬁﬁ(\ An) I’sm@ BE) Aasin Ruin® i
R 6 §Rsing ‘
| d 90 J

VA = o—| o= — —
T Ren@|9R 28 90
Ax RAy (Rsin©)A,

- | ) a \U P ] d \/‘ d - | E) a,z\,\.
= Rrne [ )em"‘””o) 20 J TER [sin(ﬂ a0 o "’)} g [éﬁ("‘f’ "WJ

) . dv | d ( IV ) l v
Vo= e e B=— | -
v R 9R <R B/’) t R%sine 99 sin de RTsin?0 07

=ABcos e,gu

Scalal (or dot) product
A X B =ABsin6,, Vector (or cross) product, fi normal 1o plane containing A and B
A-(BxC):B'(C‘xA):C'(AxB) “
Ax(BxC)=DB(A -C)~ C(A % B)

V(U V)=VU4Vy

V(UV)=UVY +vop

V- (A+B)=V-A+V.B

V-(UA)=UV-A+A-VU

VX (UA)=UVXA+YU %A

VX(A+B)=VxA+VxB

V-(A‘/.B)=B~('\7>:A)—A.'('\7><B)

Vo (VxA)y=0

Vx V=0

V.V = vy

Va VA =T(V A - 74

7. . i
/ (V- Ayl /‘ Ads Diverzence theorem (5 encloses 1)

‘/‘_(\7 o) s = Al Stokes’s theorem (5 bounded by )
B T -



