Introduction

- 1. Vectors: • $\mathbf{A} = \hat{a} |\mathbf{A}| \rightarrow a = \frac{\mathbf{A}}{|\mathbf{A}|} = \frac{\mathbf{A}}{A} = \frac{\hat{x} A_x + \hat{y} A_y + \hat{z} A_z}{\sqrt{A_x^2 + A_y^2 + A_z^2}}$ • $\mathbf{A} + \mathbf{B} = \mathbf{C}$ A A A B
- Scalar or (•) product: $\mathbf{A}.\mathbf{B} = AB\cos\theta_{AB}$, where θ is measured between vectors tails. (•) is > 0 if $0 \le \theta_{AB} < 90^{\circ}$
 - (•) is < 0 if $90 < \theta_{AB} \le 180^{\circ}$

- $\hat{x} \cdot \hat{x} = \hat{y} \cdot \hat{y} = \hat{z} \cdot \hat{z} = 1$ $\hat{x} \cdot \hat{y} = \hat{y} \cdot \hat{z} = \hat{z} \cdot \hat{x} = 0$
- Vector or (×) product. $\mathbf{A} \times \mathbf{B} = \hat{n} AB \sin \theta_{AB}$

• \hat{n} direction: when the fingers of the right hand rotate from **A** to **B**; the thumb indicates **A** × **B**.

•
$$\mathbf{A} \times \mathbf{B} = \begin{vmatrix} \hat{x} & \hat{y} & \hat{z} \\ A_x & A_y & A_z \\ B_x & B_y & B_z \end{vmatrix}$$

2. Cartesian coordinate system:

$$dl = \hat{x} \, dl_x + \hat{y} \, dl_y + \hat{z} \, dl_z = \hat{x} \, dx + \hat{y} \, dy + \hat{z} \, dz$$

Where d is the differential length, while ds is the differential surface (with $\overrightarrow{ds_x}$, $\overrightarrow{ds_y}$ and $\overrightarrow{ds_z}$) and dv = dxdydz is the differential volume.

3. Cylindrical coordinate system:

Parameters: r, ϕ , z

$$\vec{r}, \vec{\phi}, \vec{z}$$

$$dl_r \to dr$$
$$dl_{\phi} \to r \, d\phi$$
$$dl_z \to dz$$

Thus:

So we have:

$$ds_{r} = \hat{r} r d\phi dz$$
$$ds_{\phi} = \hat{\phi} dr dz$$
$$ds_{z} = \hat{z} r dr d\phi$$
$$dv = r dr d\phi dz$$

4. Spherical coordinate system:

Parameters: R, θ , ϕ

$$\vec{R}, \vec{\theta}, \vec{\phi}$$
$$dl_R \rightarrow dR$$
$$dl_{\theta} \rightarrow R \, d\theta$$
$$dl_{\phi} \rightarrow R \sin \theta \, d\phi$$

$$d\mathbf{l} = \hat{R} dl_{R} + \hat{\theta} dl_{\theta} + \hat{\phi} dl_{\phi}$$
$$= \hat{R} dR + \hat{\theta} R d\theta + \hat{\phi} R \sin \theta d\phi$$

	Cartesian Coordinates	Cylindrical Coordinates	Spherical Coordinates
Coordinate variables	x, y, z	r, ¢, z	. R, 0, ¢
Vector representation, A =	$\hat{\mathbf{x}}A_x + \hat{\mathbf{y}}A_y + \hat{\mathbf{z}}A_z$	$\hat{\mathbf{r}}A_r + \hat{\boldsymbol{\phi}}A_{\phi} + \hat{\mathbf{z}}A_z$	$\hat{\mathbf{R}}A_R + \hat{\mathbf{ heta}}A_ heta + \hat{\mathbf{ heta}}A_{m{\phi}}$
Magnitude of A, $ A =$	$\sqrt[+]{A_x^2 + A_y^2 + A_z^2}$	$\sqrt[+]{A_r^2 + A_\phi^2 + A_z^2}$	$\sqrt[4]{A_R^2 + A_\theta^2 + A_\phi^2}$
Position vector $\overrightarrow{OP_1} =$	$\hat{\mathbf{x}}x_1 + \hat{\mathbf{y}}y_1 + \hat{\mathbf{z}}z_1,$ for $P(x_1, y_1, z_1)$	$\hat{\mathbf{r}}r_1 + \hat{\mathbf{z}}z_1,$ for $P(r_1, \phi_1, z_1)$	$\hat{\mathbf{R}}R_1, \\ \text{for } P(R_1, \theta_1, \phi_1)$
Base vectors properties	$\hat{\mathbf{x}} \cdot \hat{\mathbf{x}} = \hat{\mathbf{y}} \cdot \hat{\mathbf{y}} = \hat{\mathbf{z}} \cdot \hat{\mathbf{z}} = 1$ $\hat{\mathbf{x}} \cdot \hat{\mathbf{y}} = \hat{\mathbf{y}} \cdot \hat{\mathbf{z}} = \hat{\mathbf{z}} \cdot \hat{\mathbf{x}} = 0$	$\hat{\mathbf{r}} \cdot \hat{\mathbf{r}} = \hat{\boldsymbol{\phi}} \cdot \hat{\boldsymbol{\phi}} = \hat{\boldsymbol{z}} \cdot \hat{\boldsymbol{z}} = 1$ $\hat{\mathbf{r}} \cdot \hat{\boldsymbol{\phi}} = \hat{\boldsymbol{\phi}} \cdot \hat{\boldsymbol{z}} = \hat{\boldsymbol{z}} \cdot \hat{\mathbf{r}} = 0$	$\hat{\mathbf{R}} \cdot \hat{\mathbf{R}} = \hat{\boldsymbol{\theta}} \cdot \hat{\boldsymbol{\theta}} = \hat{\boldsymbol{\theta}} \cdot \hat{\boldsymbol{\theta}} = 1$ $\hat{\mathbf{R}} \cdot \hat{\boldsymbol{\theta}} = \hat{\boldsymbol{\theta}} \cdot \hat{\boldsymbol{\theta}} = \hat{\boldsymbol{\theta}} \cdot \hat{\mathbf{R}} = 0$
	$ \hat{\mathbf{x}} \times \hat{\mathbf{y}} = \hat{\mathbf{z}} \hat{\mathbf{y}} \times \hat{\mathbf{z}} = \hat{\mathbf{x}} \hat{\mathbf{z}} \times \hat{\mathbf{x}} = \hat{\mathbf{y}} $	$\hat{\mathbf{r}} \times \hat{\boldsymbol{\phi}} = \hat{\mathbf{z}}$ $\hat{\boldsymbol{\phi}} \times \hat{\mathbf{z}} = \hat{\mathbf{r}}$ $\hat{\mathbf{z}} \times \hat{\mathbf{r}} = \hat{\boldsymbol{\phi}}$	$ \begin{array}{l} \dot{\mathbf{R}} \times \dot{\boldsymbol{\theta}} = \dot{\boldsymbol{\theta}} \\ \hat{\boldsymbol{\theta}} \times \dot{\boldsymbol{\theta}} = \ddot{\mathbf{R}} \\ \dot{\boldsymbol{\theta}} \times \dot{\mathbf{R}} = \dot{\boldsymbol{\theta}} \end{array} $
Dot product, $\mathbf{A} \cdot \mathbf{B} =$	$A_x B_x + A_y B_y + A_z B_z$	$A_r B_r + A_{\phi} B_{\phi} + A_z B_z$	$A_R B_R + A_\theta B_\theta + A_\phi B_\phi$
Cross product, A × B =	$\begin{vmatrix} \hat{\mathbf{x}} & \hat{\mathbf{y}} & \hat{\mathbf{z}} \\ A_x & A_y & A_z \\ B_x & B_y & B_z \end{vmatrix}$	$\begin{vmatrix} \hat{\mathbf{r}} & \hat{\boldsymbol{\phi}} & \hat{\mathbf{z}} \\ A_r & A_{\phi} & A_z \\ B_r & B_{\phi} & B_z \end{vmatrix}$	$ \begin{vmatrix} \hat{\mathbf{R}} & \hat{\boldsymbol{\theta}} & \hat{\boldsymbol{\phi}} \\ A_R & A_{\boldsymbol{\theta}} & A_{\boldsymbol{\phi}} \\ B_R & B_{\boldsymbol{\theta}} & B_{\boldsymbol{\phi}} \end{vmatrix} $
Differential length, $dl =$	$\hat{\mathbf{x}} dx + \hat{\mathbf{y}} dy + \hat{\mathbf{z}} dz$	$\hat{\mathbf{r}}dr+\hat{\boldsymbol{\phi}}rd\phi+\hat{\mathbf{z}}dz$	$\hat{\mathbf{R}}dR + \hat{\boldsymbol{\theta}}Rd\theta + \hat{\boldsymbol{\phi}}R\sin\thetad\phi$
Differential surface areas	$d\mathbf{S}_{\mathbf{X}} = \hat{\mathbf{X}} d\mathbf{y} d\mathbf{z}$	$d\mathbf{s}_r = \hat{\mathbf{r}}r \ d\phi \ dz$	$d\mathbf{S}_R = \hat{\mathbf{R}}R^2 \sin\theta d\theta d\phi$
	$ds_y = \hat{y} dx dz$ $ds_z = \hat{z} dx dy$	$ds_{\phi} = \hat{\phi} dr dz$ $ds_{z} = \hat{z}r dr d\phi$	$ds_{\theta} = \hat{\theta} R \sin \theta dR d\phi$ $ds_{\phi} = \hat{\phi} R dR d\theta$
Differential volume, $d\mathcal{V} =$	dx dy dz	r dr-dø dz	$R^2 \sin \theta dR d\theta d\phi$

Transformation	Coordinate Variables	Unit Vectors	Vector Components
Cartesian to	$r = \sqrt[+]{x^2 + y^2}$	$\hat{\mathbf{r}} = \hat{\mathbf{x}}\cos\phi + \hat{\mathbf{y}}\sin\phi$	$A_r = A_x \cos \phi + A_y \sin \phi$
cylindrical	$\phi = \tan^{-1}(y/x)$	$\hat{\boldsymbol{\phi}} = -\hat{\mathbf{x}}\sin\phi + \hat{\mathbf{y}}\cos\phi$	$A_{\phi} = -A_x \sin \phi + A_y \cos \phi$
•	z = z	$\hat{z} = \hat{z}$	$A_z = A_z$
Cylindrical to	$x = r \cos \phi$	$\hat{\mathbf{x}} = \hat{\mathbf{r}}\cos\phi - \hat{\boldsymbol{\phi}}\sin\phi$	$A_x = A_r \cos \phi - A_\phi \sin \phi$
Cartesian	$y = r \sin \phi$	$\hat{\mathbf{y}} = \hat{\mathbf{r}} \sin \phi + \hat{\boldsymbol{\phi}} \cos \phi$	$A_{y} = A_{r} \sin \phi + A_{\phi} \cos \phi$
	2 = 2	$\hat{z} = \hat{z}$	$A_z = A_z$
Cartesian to	$R = \sqrt[+]{x^2 + y^2 + z^2}$	$\hat{\mathbf{R}} = \hat{\mathbf{x}}\sin\theta\cos\phi$	$A_R = A_x \sin \theta \cos \phi$
spherical		$+\hat{y}\sin\theta\sin\phi+\hat{z}\cos\theta$	$+ A_y \sin\theta \sin\phi + A_z \cos\theta$
	$\theta = \tan^{-1}\left[\sqrt[4]{x^2 + y^2}/z\right]$	$\hat{\theta} = \hat{\mathbf{x}} \cos \theta \cos \phi$	$A_{\theta} = A_x \cos \theta \cos \phi$
		$+\hat{\mathbf{y}}\cos\theta\sin\phi-\hat{\mathbf{z}}\sin\theta$	$+ A_y \cos \theta \sin \phi - A_z \sin \theta$
	$\phi = \tan^{-1}(y/x)$	$\hat{\phi} = -\hat{\mathbf{x}}\sin\phi + \hat{\mathbf{y}}\cos\phi$	$A_{\phi} = -A_x \sin \phi + A_y \cos \phi$
Spherical to	$x = R \sin \theta \cos \phi$	$\hat{\mathbf{x}} = \hat{\mathbf{R}} \sin\theta \cos\phi$.	$A_x = A_R \sin\theta \cos\phi$
Cartesian		$+\hat{\theta}\cos\theta\cos\phi-\hat{\phi}\sin\phi$	$+ A_{\theta} \cos \theta \cos \phi - A_{\phi} \sin \phi$
	$y = R \sin \theta \sin \phi$	$\hat{\mathbf{y}} = \hat{\mathbf{R}} \sin \theta \sin \phi$	$A_Y = A_R \sin \theta \sin \phi$
		$+\hat{\theta}\cos\theta\sin\phi+\hat{\phi}\cos\phi$	$+ A_{\theta} \cos \theta \sin \phi + A_{\phi} \cos \phi$
	$z = R \cos \theta$	$\hat{\mathbf{z}} = \hat{\mathbf{R}}\cos\theta - \hat{\boldsymbol{\theta}}\sin\theta$	$A_z = A_R \cos \theta - A_\theta \sin \theta$
Cylindrical to	$R = \sqrt[4]{r^2 + z^2}$	$\hat{\mathbf{R}} = \hat{\mathbf{r}}\sin\theta + \hat{\mathbf{z}}\cos\theta$	$A_R = A_r \sin\theta + A_z \cos\theta$
spherical	$\theta = \tan^{-1}(r/z)$	$\hat{\theta} = \hat{r}\cos\theta - \hat{z}\sin\theta$	$A_{\theta} = A_r \cos \theta - A_z \sin \theta$
	$\phi = \phi$	$\hat{\phi} = \hat{\phi}$	$A_{\phi} = A_{\phi}$
Spherical to	$r = R \sin \theta$	$\hat{\mathbf{r}} = \hat{\mathbf{R}}\sin\theta + \hat{\boldsymbol{\theta}}\cos\theta$	$A_r = A_R \sin \theta + A_\theta \cos \theta$
cylindrical	$\phi = \phi$	$\hat{\phi} = \hat{\phi}$	$A_{\phi} = A_{\phi}$
	$z = R \cos \theta$	$\hat{\mathbf{z}} = \hat{\mathbf{R}}\cos\theta - \hat{\boldsymbol{\theta}}\sin\theta$	$A_{z} = A_{R} \cos \theta - A_{\theta} \sin \theta$

5. Gradient of scalar field:

The gradient operator has no physical meaning by itself. It attains as physical meaning once it operates on a scalar physical quantity. The result of operation is a vector whose magnitude is equal to the maximum rate of change per unit distance and its direction is along the direction of maximum increase (ex. Temp vs. Height) $T \rightarrow f(Z)$

$$if T = f(x, y, z)$$

$$\Rightarrow dT = \frac{\partial T}{\partial x} dx + \frac{\partial T}{\partial y} dy + \frac{\partial T}{\partial z} dz$$

$$\bullet \nabla \triangleq \hat{x} \frac{\partial}{\partial x} + \hat{y} \frac{\partial}{\partial y} + \hat{z} \frac{\partial}{\partial z}$$

$$\bullet Cylindrical \ coodinate \ system: \nabla \triangleq \hat{r} \frac{\partial}{\partial r} + \hat{\varphi} \frac{\partial}{\partial \varphi} + \hat{z} \frac{\partial}{\partial z}$$

$$\bullet Spherical \ coodinate \ system: \nabla \triangleq \hat{R} \frac{\partial}{\partial R} + \hat{\theta} \frac{1}{R} \frac{\partial}{\partial \theta} + \hat{\varphi} \frac{1}{R \sin \theta} \frac{\partial}{\partial \varphi}$$

6. Divergence:

•
$$\nabla . \mathbf{E} = \frac{\partial E_x}{\partial x} + \frac{\partial E_y}{\partial y} + \frac{\partial E_z}{\partial z} = \operatorname{div} \mathbf{E}$$

•
$$\oint_{S} E.ds = (\nabla.E) \Delta v$$

Definition: the flux of a vector field is analogous to the flow of an incompressible fluid such as water. For a volume with an enclosed surface, there will be an excess of outward or inward flow through the surface only when the volume contains a source or a sink respectively.

div $\succ 0 \rightarrow \exists$ source of fluid inside the volume div $\prec 0 \rightarrow \exists$ sink div = 0 \rightarrow uniform field : in = out

7. Curl of a vector field:

The curl of B describes the rotational property or the circulation of B.

Circulation is zero for the uniform field in (a), but it is not zero for the azimuthal field in (b).

n field x (b) Azimuthal field

Circulation of $\mathbf{B} = \oint_{c} \mathbf{B} \cdot d\mathbf{I}$ The circulation of a uniform field = 0.

$$\nabla \times \mathbf{B} = \begin{vmatrix} x & y & z \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ B_x & B_y & B_z \end{vmatrix}$$

8. Stokes's Theorem:

$$\int_{S} (\nabla \times \mathbf{B}) \cdot ds = \oint_{C} \mathbf{B} \cdot d\mathbf{I}$$