
1. Maxwell’s equations 
 

Modern electromagnetism is based on a set of four fundamental relations known as 
Maxwell’s equations: 
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where and  are the electric quantities interrelated by E D εD = E , with ε  being the 
electric permittivity of the material;  and H  are magnetic field quantities interrelated 
by 

B
μB = H , with μ  being the magnetic permeability of the material; vρ  is the electric 

charge density per unit volume; and  is the current density per unit area. J
 

In the static case, none of the quantities appearing in Maxwell’s equations are a 
function of time (i.e., 0t∂ ∂ = ). This happens when all charges are permanently fixed in 
space, or, if they move, they do so at a steady rate so that vρ  and  are constant in time. 
Under these circumstances, the time derivatives of  and in the above equations are 
zero, and the Maxwell’s equations reduce to: 
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Magnetostatics: 
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Maxwell’s four equations separate into two uncoupled pairs, with the first involving 

only the electric field quantities and  and the second pair involving only the 
magnetic field quantities  and . The electric and magnetic fields are no longer 
interconnected in the static case. This allows us to study electricity and magnetism as two 
distinct and separate phenomena, as long as the spatial distributions of a charge and 
current flow remain constant in time. 
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We define the volume charge density vρ  as 
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where  is the charge contained inqΔ vΔ . In general vρ  is defined at a given point in 
space, specified by ( , ,x y z ) in a Cartesian coordinate system, and at a given time t . Thus, 

( , , , )v v x y z tρ ρ= . Physically, vρ  represents the average charge per unit volume for a 
volume  centered at (vΔ , ,x y z ). The total charge contained in a given volume  is given 
by 

v
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v
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In some cases, the surface charge density sρ  is defined as 
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where  is the charge present across an elemental surface area qΔ sΔ . Similarly, if the 
charge is distributed along a line, which need not to be straight, we characterize the 
distribution in terms of the line charge density lρ , defined as 
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For electrostatics in free space, only the electric field intensity E is needed. E is 

defined as the force per unit charge that a very small stationary test charge experiences 
when it is placed in a region where an electric field exists: 
 
E=limq→0 (F/q)    (V/m). 
 
E-is in the direction of F. 
 
Alternatively: F=qE  (N) 
 

The two fundamental postulates of electrostatics in free space specify the divergence 
and the curl of E:  

 
                     ∇.E=ρv/εo      (in free space) &  ∇×E=0  where ρv in c/m3. 
 

The curl of E =0 means that a static electric fields in irrotational, & ∇.E=ρv/εo implies 
that this field is not solenoidal unless ρv=0.  
 

The above equation is point relations; i.e. they hold at every point in space taking the 
volume ρ: 

∫v ∇ .E dv=1/εo ∫v ρvdv 
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This can be written as ∫s E.ds =Q/εo (gauss’s law) where Q-total charge in V 

integrating ∇×E over an open surface &applying Stokes ‘s theorem: 
 

∫c E.dl=0 where C is an arbitrary closed contour. This means that the line integral of a 

static electric field around any closed path vanishes, which is equivalent to KVL in 
circuit theory. 
 
Summary: the two fundamental postulates of electrostatics in free space are 
 
 

Differential 
form 

Integral form 

∇.E=ρv/εo 

∇×E=0 ∫s  E.ds= Q/εo 

∫s E.dl=0 

 
2. Coulomb’s law  
 

Consider a single point charge q, at rest in a boundless free space. Find the electric 
field intensity due to q. 
 

For this, we draw a spherical surface of an arbitrary radius R centered at q(a 
hypothetical 
Enclosed surface –Gaussian surface)   
 

Since a point charge has no directions, its electric field must be everywhere radial as 
the same intensity at all points on the spherical surface. 
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∫s .E ds = ∫s  (aRER).aR ds=q/εo. 

Or ER ∫s ds=q/εo →ER (4 πR2)=q/εo. 

 
Therefore: .E R=aR.ER=aR q/(4 πR2 εo)      V/m 
 
Conclusion: the electric field intensity of a positive point charge is in the outward radial 
direction. It has a magnitude proportional to q and inv. proportional to R2. 

 
For a material with electric permittivityε , the electrical field quantities and  are 

related by 
E D

=εD E  
with 

0rε ε ε=  
where  

12 9
0 8.85 10 (1 36 ) 10ε π− −= × ×  

 

is the electric permittivity of free space, and 0rε ε ε=  is called the relative 
permittivity (or dielectric constant) of the material. For most materials and under most 
conditions, ε  of the material has a constant value independent of both the magnitude and 
direction of  E , then the material is said to be linear because  and  are related 
linearly, and if it is independent of the direction of , the material is said to be isotopic. 
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If the charge q is not located at the origin of a chosen coordinate system, suitable changes 
should be made to a R and R. Let the position vector of q be R’ and that of a field point p 
be R. From the above derived equation 
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where pqa

uuur
 is the unit vector drawn from q to p. Since aqp=( R - R ’)/⏐ R - R ’⏐. We have: 
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Example: Determine the electric field intensity at p(-0.2,0,-2.3) due to a point charge of 

+5(nC) at Q(0.2,0.1,-2.5) in air. All dimensions are in meters. 
 
The position vector for p is: 

R  = op =-ax0.2-az2.3 

and R ’ is the position vector for Q: 

R ’=OQ =ax0.2+ay0.1-az2.5 

R - R ’=-ax0.4-ay0.1+az0.2 

 ( ) ( ) ( )2 2 2' 0.4 0.1 0.2 0.458 ( )R R m⎡ ⎤− = − + − + =⎣ ⎦
ur uur

. 

 
Substituting in (1) above: 

x y z3

0

( ')  214.5(-a 0.873- a 0.218 + a 0.437) (V/m)
4 '

p
q R RE

R Rπε
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= =
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The quantity in within the parentheses is ( R - R ’)/⏐ R - R ’⏐= pqa
uuur

 

The magnitude of E p is 214.5 

When a point charge q2 is placed in the field of another point charge q1,a force F12 is 
experienced by q2 due to electric field intensity E 12 of q1 at q2. 
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We have: 
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Coulomb’s law: the force between 2 points charges is proportional to q1q2 and inversely 
proportional to R2. 
 
 
Example: point charges 1 mC and – 2 mC are located at (3,2,-1) and (-1,-1,4) 
respectively. Calculate the electric force on a 10nC located at (0,3,1) and E at that point. 

 
F  =∑k=1,2 Q Qk aR /4 πεoR2=∑k=1,2 Q Qk( r - r k)/ 4 πεo ⏐r-rk⏐3 

 
     F    =Q/4 πεo{10-3[(0,3,1)-(3,2,1)]/⏐(0,3,1)-(3,2,-1)⏐3  
              –2.10-3[(0,3,1)-(-1,-1,4)]/⏐(0,3,1)-(-1,-1,4)⏐3 } 
      
F =9.10-2[(-3,1,2)/14√14 +(-2,8,6)/26√26 ]. 
 
F =-6.507 a x-3.81 a y+7.506 a z           mN. 
 
At that point: 

E  = F /Q=∑k=1,2 Qk( r - r ’)/ 4 πεo⏐r-rk⏐3 =(-6.507,-3.81,7.506)10-3/10×10-9

E  =-650,7 a x –381.7 a y +750.6 a z kv/m. 
 
 

3. Electric field due to a system of discrete charges. 
 
 Suppose the electrostatic field is created by n discrete point charges. Since the E is a 
linear function of aR q/R2 , the principle of superposition applies and the total E field is 
vector sum of Es of individual qs.
 
 Let the positions of q1,q2, q3, ------qn be noted by positions vectors R1’,R2’,------Rn’   
and let the position of the field point at which E is to be calculated be denoted by R. 

1 1 2 2
3 3

0 1 2

( '( ') ( ')1 .........
4 ' '

n n

n

q R Rq R R q R RE
R R R R R Rπε

⎡ ⎤
−− −⎢ ⎥= + + +⎢ ⎥− − −⎢ ⎥⎣ ⎦

3

)

'

ur uuurur uur ur uuur
ur

ur uur ur uuur ur u ruu  

or  

3
10

( ')1 ( / ).
4 '

n
k k

k
k

q R RE V
R Rπε =

−
=

−
∑ m

ur uuur
ur

ur uuur  

A better approach will be discussed later. 
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4. Electric field due to a continuous distribution of charge  
 
Here the electric field can be obtained by integrating (superposing) the contribution of an 
element of charge over the charge distribution. 
 
The contribution of the volume charge ρv dV’ 
in a differential volume element dv’ to the 
electric field intensity at the field point P is: 
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If the charge is distributed on a surface with ρs (C/m2), 
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and for a line charge: 
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lρ  (C/m) is the charge density and Q= ∫ ρL dL. 
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