
Example: Electric field of a ring of charge 
 

A ring of charge of radius b is characterized by a uniform line charge density of 
positive polarity . With the ring in free space and positioned in the x-y plane as shown 

in the figure below, determine the electric field intensity 
lρ

E  at the point P(0, 0, h) along 
the axis of the ring at a distance h from its center. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Solution: 
The segment has a length φ= dbdl  and contains charge φρ=ρ= dbdldq ll . 
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The electric field at P(0, 0, h) due to the charge of segment 1 is 
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 From symmetry considerations, the fields 2Ed  generated by segment 2 in the last 
figure which is located diametrically opposite the location of segment 1, is identical with 

1Ed  except that the r - component of ˆ 2Ed  is opposite that of 1Ed . Hence, the r - 
component of the sum cancel and the -contributions add. The sum of the two 
contributions is 
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so, 

( )

( )

( ) ,
4

ˆ

2
ˆ

2
ˆE

2322
0

2322
0

0
2322

0

Q
hb

h
hb
hb

d
hb

hb

l

l

+πε
=

+ε

ρ
=

φ
+πε

ρ
= ∫

π

z

z

z

 

where  lbQ ρπ= 2 .
 
Example: Electric field of a circular disk of charge 
 
 Find the electric field at a point P(0, 0, h) in free space at a height h on the z-axis due 
to a circular disk of charge in the x-y plane with uniform charge density , as shown in 

figure, and then evaluate 
sρ

E  for the infinite-sheet case by letting ∞→a . 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Solution: 
 A ring of radius r and width dr has an area rdrds π= 2 and contains charge 

 .2 drrdsdq ss πρ=ρ=
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The total field at P is obtained by integrating the expression over the limits  to 0=r
ar = : 
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with the plus minus sign corresponding to when and the minus sign to when 

(below the disk). 
0fh

0ph
For an infinite sheet of charge with ,∞=a  

02
ˆE

ε
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= sz   (Infinite sheet of charge). 
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Gauss’s Law: 
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 The integral form of Gauss’s law can be applied to determine D  due to a single 
isolated charge q by constructing a closed, spherical, Gaussian surface S of an arbitrary 
radius R centered at q. Applying Gauss’s law gives 
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 Gauss’s law, as given by equation (*), provide a convenient method for determining 
the electrostatic flux density D  when the charge distribution possesses symmetry 
properties that allow us to make valid assumptions about the variations of the magnitude 
and direction of D as a function of spatial location. Because at every point on the surface, 
only the direction of sd is the outward normal to the surface, only the normal component 
of D at the surface contribute to the integral  in equation (*). To successfully apply 
Gauss’s law, the surface S should be chosen such that, from symmetry considerations, the 
magnitude of D is constant and its direction is normal or tangential at every point of each 
subsurface of S (the surface of a cube, for example, has six subsurface). 
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Example: Electric field of an infinite line of charge 
 
 Use Gauss’s law to obtain an expression for E  in free space due to an infinitely long 
line of charge with uniform charge density lρ along the z-axis. 

 
 
Solution: 

rDrD ˆ=  
 The total charge contained within the cylinder is hQ lρ= , where h is the height of the 

cylinder. Since D  is along r , the top and bottom surfaces of the cylinder do not 
contribute to the surface integral. 
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which gives the result, 
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Electric potential as a function of electric field 
 
 We begin by considering the simple case of a positive charge q in a uniform electric 
field EyE ˆ= , parallel to the (-y)-direction, as shown in figure. The presence of the field 

E  exerts a force EFe q= on the charge in the negative y-direction. If we attempt to 

move the charge along the positive y-direction (against the force eF ), we will need to 

provide an external force extF  to counter-act eF , which requires the expenditure of 
energy. To move q without any acceleration (at a constant speed), it is necessary that the 
net force acting on the charge be zero, which means that 0=+ eext FF , or 

.EFF eext q−=−=  
The work done, or energy expended, in moving any object a vector differential 

distance dl under the influence of a force extF  is 
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 Work, or energy, is measured in joules (J). In the present case, if the charge is moved 
a distance dy along , then ŷ
 

.ˆ)ˆ( dyEqdy EqdW =⋅−−= yy  
 

 
 

)().VJ/C(lE ∗∗⋅−== ord 
q

dWdV  

 
 The potential difference between any two points P2 and P1 is obtained by integrating 
the equation (**) along any path between them. That is,  
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or, 
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 Usually, the reference-potential point is chosen to be at infinity. That is, in equation 
(***) we assume that  when P01 =V 1 is at infinity, and therefore the electric potential V at 
any point P is given by 
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Electric potential due to point charges 
 
 For a point charge q located at the origin of a spherical coordinate system, the electric 
field at a distance R is given by 
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Hence, we will conveniently choose the path to be along the radial direction , in which 
case  and dRd Rl ˆ=
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 If the charge q is at a location other than the origin, specified by a source position 
vector 1R , then V at observation position vector R  becomes  
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where 1RR − is the distance between the observation point and the location of the 

charge q. The principle of superposition that we applied previously to the electric field E  
also applies to the electric potential V. Hence, for N discrete point charges q1, q2,..., qN 
having position vectors 1R , 2R , . . . , NR , the electric potential is 
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Electric potential due to continuous distributions 
 
Based on previous analysis: 
 

on).distributi(line'
'4

1)(

on).distributi(surface'
'4

1)(

on).distributi(volume'
'4

1)(

'

'

'

dl
R

V

ds
R

V

dv
R

V

l

l

S

S

v

v

∫

∫

∫

=

=

=

ρ
πε

ρ
πε

ρ
πε

R

R

R

 

 
Electric field as a function of electric potential 
 

)(. oV−∇=E  
 

 From mathematical reasoning any vector whose curl = 0 ( 0=×∇ E ) can be 
expressed as V∇=E . The minus sign is to indicate that the work done to move q is 
against the field E . 
 
Example: Electric field of an electric dipole 
 
 An electric dipole consists of two point charges of equal magnitude and opposite 
polarity, separated by a small distance as shown in figure. Determine V and E  at any 
point P in free space, given that P is at a distance , where d is the spacing 
between the two charges. 
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Solution: 
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 Since , the lines labeled RdR ff 1 and R2 in the first figure are approximately 
parallel to each other, in which case the following approximations apply:  
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where p=qd is called the dipole moment of the electric dipole. Using the equation ( )⊕  in 
equation then gives )(⊗
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Poisson’s Equation 
 
With ED ε= , the differential form of Gauss’s law can be written as 

ε
vρ=⋅∇ E  

Inserting equation  in the above equation gives )(o
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In view of the definition for the Laplacian of a scalar function V such as 
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Equation can be cast in the abbreviated form )(×
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 This is known as Poisson’s equation. For a volume v’ containing a volume density 
distribution , the solution for V derived previously and expressed as  vρ
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satisfies Poisson’s equation. If the medium under consideration contains no free charges, 
Poisson’s equation reduces to  
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Conductors 
 
 The drift velocity eu  of electrons in a conducting material is related to the externally 

applied electric filed E  through 

(m/s),ee Eu μ−=  
where eμ  is a material property call the electron mobility with units of (m2/V.s). In a 
semiconductor, current flow is due to the movement of both electrons and holes, and 
since holes are positive-charge carriers, the hole drift velocity hu is in the same direction 

as E , 

(m/s),hh Eu μ−=  
where hμ  is the hole mobility. 
 
The current density in a medium containing a volume density  of charges moving with 

a velocity 
vρ

u  is uJ vρ= . Thus, the total conduction current density is 
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where  and , with NeNeve −=ρ eNhvh −=ρ e and Nh being the number of free electrons 
and the number of free holes per unit volume, and  is the absolute charge 
of a single hole or electron. The quantity inside the parentheses is defined as the 
conductivity of the material, 

C106.1 19−×=e

σ . Thus, 

ctors),(semicondu    (S/m))(
ρρ he

eNN hhee

vhve

μμ
μμσ

+=
+−=

 

 
so, 
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This equation is called the point form of Ohm’s law. Note that, in a perfect dielectric with 

0,0 == Jσ  regardless of E , and in a perfect conductor with 0/, ==∞= σσ JE  

regardless of J . That is, 
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Resistance 
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Example: Conductance of coaxial cable 
 
The radii of the inner and outer 
conductors of a coaxial cable of length l 
are a and b respectively. The insulation 
material has conductivity σ . Obtain an 
expression for G’, the conductance per 
unit length of the insulation layer. 
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Solution: 
 Let I be the total current flowing from the inner conductor to the outer conductor 
through the insulation material. At any radial distance r from the axis of the center 
conductor, the area through which the current flows is lrA π2= . Hence, 
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 In a resistor, the current flows from higher electric potential to lower potential. 
Hence, if J  is the -direction, the inner conductor must be at a higher potential than the 
outer conductor. Accordingly, the voltage difference between the conductors is 
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The conductance per unit length is then 
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Dielectrics 
 
 In a dielectric, an externally applied field extE  cannot effect mass migration of 
charges since none are able to move freely, but it can polarize the atoms or molecules in 
the material by distorting the center of the cloud and the location of the nucleus. 
 

In the absence of 
an external electric 
field extE , the center 
of the electron cloud 
is co-located with the 
center of the nucleus, 
but when a field is 
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applied, the two centers are separated by a distance d. 
 The induced electric field, called a polarization field, is weaker than and opposite in 
direction to extE . Consequently, the net electric field present in the dielectric material is 

smaller than extE . 

 Whereas D  and E are related by 0ε  in free space, the presence of these microscopic 
dipoles in a dielectric material alters that relationship in that material to  

,0 PED +ε=  

where P , called the electric polarization field, accounts for the polarization properties of 
the material. A dielectric medium is said to be linear if the magnitude of the induced 
polarization field is directly proportional to the magnitude of E , and it is said to be 
isotropic if the polarization field and E are in the same direction. 
 
 A medium is said to be homogenous if its constitutive parameters ( ) are 
constant throughout the medium. 
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where  is called the electric susceptibility of the material. Thus we have eχ
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which defines the permittivity of the material as 
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 In reality, if E  exceeds a certain critical value, known as the dielectric strength of the 
material, it will free the electrons completely from the molecules and cause them to 
accelerate through the material in the form of a conducting current. When this happens, 
sparking can occur, and the dielectric material can sustain permanent damage due to 
electron collision with the molecular structure. This abrupt change in behavior is called 
dielectric breakdown.  
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