Example: Electric field of a ring of charge

A ring of charge of radius b is characterized by a uniform line charge density of
positive polarity p,. With the ring in free space and positioned in the x-y plane as shown

in the figure below, determine the electric field intensity E at the point P(0, 0, /) along
the axis of the ring at a distance 4 from its center.
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Solution:
The segment has a length dl = b d¢ and contains chargedq =p, dl =p,b d¢.
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from which we have,
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The electric field at P(0, 0, ) due to the charge of segment 1 is
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From symmetry considerations, the fields d?z generated by segment 2 in the last

figure which is located diametrically opposite the location of segment 1, is identical with

do.

d_E’1 except that the - component of dE, is opposite that ofd—E;. Hence, the r-

component of the sum cancel and the Z-contributions add. The sum of the two
contributions is

dF = dE, +dE, =200 40
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where Q =2nbp,.

Example: Electric field of a circular disk of charge

Find the electric field at a point P(0, 0, /) in free space at a height /4 on the z-axis due
to a circular disk of charge in the x-y plane with uniform charge density p,, as shown in

figure, and then evaluate E for the infinite-sheet case by letting @ — .
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Solution:
A ring of radius » and width dr has an area ds=2mrdrand contains charge

dg =p ds=2mnp rdr.
SO,

- . h

dE =12 2np,r dr.
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The total field at P is obtained by integrating the expression over the limits » =0 to
r=a:

-~ .p.ht rdr

E = s
2¢, ‘([(r2+h2)3/2
2¢, a’+h’

with the plus minus sign corresponding to when /> 0and the minus sign to when
h < 0 (below the disk).
For an infinite sheet of charge with a = «,

E’ _ s Ps )
=Z—_—— (Infinite sheet of charge).
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Gauss’s Law:

V-D= p, (Gauss's Law),

%-ﬁdv=fvpvdv=Q,

v

V-Ddv=4§D-ds.

N

B-d_ézQ (Gauss's Law). (%)

The integral form of Gauss’s law can be applied to determine D due to a single
isolated charge ¢ by constructing a closed, spherical, Gaussian surface S of an arbitrary
radius R centered at g. Applying Gauss’s law gives

D-ds = §IA{DR .Rds

= D, -ds = D, (4nR*)=¢.

- DR) =~ g
E(R) = =R V/m).
(R) g 4meR? (V/m)

Gauss’s law, as given by equation (x), provide a convenient method for determining

the electrostatic flux density D when the charge distribution possesses symmetry
properties that allow us to make valid assumptions about the variations of the magnitude

and direction of D as a function of spatial location. Because at every point on the surface,
only the direction of ds is the outward normal to the surface, only the normal component

of Dat the surface contribute to the integral in equation (x). To successfully apply
Gauss’s law, the surface S should be chosen such that, from symmetry considerations, the

magnitude of D is constant and its direction is normal or tangential at every point of each
subsurface of S (the surface of a cube, for example, has six subsurface).



Example: Electric field of an infinite line of charge

Use Gauss’s law to obtain an expression for E in free space due to an infinitely long
line of charge with uniform charge density p,along the z-axis.

2

§ . — uniform line
of charge p,

Gaussian surface

Solution:
D=iD,
The total charge contained within the cylinder is Q = p, &, where 4 is the height of the

cylinder. Since D is along r, the top and bottom surfaces of the cylinder do not
contribute to the surface integral.

h 2=m
| [#D,-frdodz=p,h
z=0 =0
which gives the result,
- D .D -
E=—=pr—p_P (Infinite line of charge).
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Electric potential as a function of electric field

We begin by considering the simple case of a positive charge ¢ in a uniform electric
field E =y E, parallel to the (-y)-direction, as shown in figure. The presence of the field

—

E exerts a force F—e = qE on the charge in the negative y-direction. If we attempt to
move the charge along the positive y-direction (against the force E), we will need to

provide an external force a to counter-act F‘e , which requires the expenditure of
energy. To move g without any acceleration (at a constant speed), it is necessary that the

—_—

net force acting on the charge be zero, which means thatF,

ext

+F, =0, o0r
F  =-F =—qE.

€x

The work done, or energy expended, in moving any object a vector differential

distance dl under the influence of a force F,, is

e

dW = F, -dl =—qgE.dl (J)

Work, or energy, is measured in joules (J). In the present case, if the charge is moved
a distance dy along y, then

dW =—q(-yE) -ydy=qEdy.

dv _aw _ —E-dl (J/C or V). (**)

q

The potential difference between any two points P, and P; is obtained by integrating
the equation (x+) along any path between them. That is,
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jdV:—jE dl,
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or,

PZ
Vzlez_Vl:_J‘E'd1 (k%)
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Usually, the reference-potential point is chosen to be at infinity. That is, in equation
(+++) we assume that V;, =0 when P, is at infinity, and therefore the electric potential V" at
any point P is given by
b5

V=-(E-dl
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Electric potential due to point charges

For a point charge ¢ located at the origin of a spherical coordinate system, the electric
field at a distance R is given by

= 5 4
E=R—L— (V/m).
AeR? (V/m)

Hence, we will conveniently choose the path to be along the radial direction , in which
case dl = RdR and

V_—j RdR=—1—" (V).
477:8R 4meR

If the charge g is at a location other than the orlgln specified by a source position

vectorR, , » then V at observation position vector R becomes

V(R)= ——2—— (V)
47c(0,‘R—R1
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R-R,

where

is the distance between the observation point and the location of the

charge g. The principle of superposition that we applied previously to the electric field E
also applies to the electric potential V. Hence, for N discrete point charges g;, ¢»,..., gn

—_—

having position vectors R, , R, , ..., R, the electric potential is



. 1 &
V(R)= 4me Z
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q i (V).

R-R,

Electric potential due to continuous distributions

Based on previous analysis:

V(R)=—— [ Lo gy
dres, R

V(R) = —— [£5 gy
dre ¢ R

V(ﬁ) __1 [P
4re e R

(volume distribution).

(surface distribution).

(line distribution).

Electric field as a function of electric potential

From mathematical reasoning any vector whose curl = 0 (6><]§=0) can be

expressed as E=VFV . The minus sign is to indicate that the work done to move ¢ is

against the field E.

Example: Electric field of an electric dipole

An electric dipole consists of two point charges of equal magnitude and opposite

polarity, separated by a small distance as shown in figure. Determine V' and E at any
point P in free space, given that P is at a distance R >>d , where d is the spacing

between the two charges.

—q d cos 0

(a) Electric dipole

(b) Electric-field pattern



Solution:

po 1 (4. -9)_ 49 [R-R)
dre,\ R, R, dre,\ RR,

Since R>>d, the lines labeled R, and R, in the first figure are approximately
parallel to each other, in which case the following approximations apply:

R,—R ~dcosf, R,R ~R’
Hence,

- qd cos @

, ®
4re,R’ (®)

and
Rz—RlzquOS¢9=qd'IA{=p'li. (@)

where p=g¢d is called the dipole moment of the electric dipole. Using the equation (@) in
equation (®)then gives

p-R o
=X " electric dipole).
4re,R? ( pole)

In spherical coordinates, equation (o) is given by

—

E=-VV

~oV ~1o0V . 1 oV
= R—+0——+0—
OR R 00 Rsin@ 0¢

SO,
:L}(ﬁ2cosﬁ+ésin0) (V/m)
4reyR

=1

Poisson’s Equation

With D = ¢E , the differential form of Gauss’s law can be written as

V.E=Pr
&
Inserting equation () in the above equation gives



v (vr)=-P
&
In view of the definition for the Laplacian of a scalar function ¥ such as

_ _ 2 2 2
VZV:V-(VV):a 12/+a 12/+a 2/
ox° oy 0z

Equation (x) can be cast in the abbreviated form
vy =P (Poisson's equation).

This is known as Poisson’s equation. For a volume v’ containing a volume density
distributionp , the solution for V" derived previously and expressed as

! &dv'

4ed R

satisfies Poisson’s equation. If the medium under consideration contains no free charges,
Poisson’s equation reduces to

V’V =0 (Laplace's equation).

Conductors

The drift velocity lT; of electrons in a conducting material is related to the externally

applied electric filed E through

u =-—u E (m/s),
where x4, is a material property call the electron mobility with units of (m*/V's). In a

semiconductor, current flow is due to the movement of both electrons and holes, and

since holes are positive-charge carriers, the hole drift velocity u, is in the same direction

as E,
—_— —

u, =—m,E  (s),

where 44, is the hole mobility.

The current density in a medium containing a volume density p, of charges moving with

a velocity u is J = p u. Thus, the total conduction current density is
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J=J,+J3,=p,u +p,u, (A/m’).

J = (_pve/’le + pvhll’lh)E’

where p,, =—N,e and p, =—N,e, with N, and N, being the number of free electrons

and the number of free holes per unit volume, and e =1.6x107" C is the absolute charge

of a single hole or electron. The quantity inside the parentheses is defined as the
conductivity of the material, o . Thus,

0= _pvelue + pvhluh
=(N,u,+ N, )e (S/m) (semiconductors),

S0,

J=cE (A/m®) (Ohm's law).

This equation is called the point form of Ohm’s law. Note that, in a perfect dielectric with

o= 0,3 =0 regardless of E, and in a perfect conductor with o = oo,]E =J/oc=0
regardless of J. That is,
Perfect dielectric: J =0

Perfect conductor : E =0

Resistance

, _!.E-dl jE-dl

T s [
S S

Example: Conductance of coaxial cable

The radii of the inner and outer
conductors of a coaxial cable of length /
are a and b respectively. The insulation
material has conductivity o . Obtain an
expression for G’, the conductance per
unit length of the insulation layer.
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Solution:

Let / be the total current flowing from the inner conductor to the outer conductor
through the insulation material. At any radial distance » from the axis of the center
conductor, the area through which the current flows is 4 =2z r/ . Hence,

Joilog L
A 2rrl
and from J = O']_*j,
= . 1
E=r——
2norl

In a resistor, the current flows from higher electric potential to lower potential.

Hence, if J is the F -direction, the inner conductor must be at a higher potential than the
outer conductor. Accordingly, the voltage difference between the conductors is

Vab:—jﬁ‘a:—j I r-rdr
b

The conductance per unit length is then
G G_1 _ I _ 270
I Rl V,l In(b/a)

Dielectrics

In a dielectric, an externally applied field ]fx; cannot effect mass migration of

charges since none are able to move freely, but it can polarize the atoms or molecules in
the material by distorting the center of the cloud and the location of the nucleus.

In the absence of SEles
an external electric Nucleus

field E— the center

ext °
Electron
of the electron cloud
1s co-located with the
center of the nucleus,

but when a field is

Center of electron
Giom cloud

(@) Eext=0 (b) Ecxt £ 0 (¢) Electric dipole
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applied, the two centers are separated by a distance d.
The induced electric field, called a polarization field, is weaker than and opposite in

direction toE_, . Consequently, the net electric field present in the dielectric material is
smaller than ]ETX; .

Whereas D and E are related by ¢, in free space, the presence of these microscopic
dipoles in a dielectric material alters that relationship in that material to

D=¢,E+P,

where P, called the electric polarization field, accounts for the polarization properties of
the material. A dielectric medium is said to be linear if the magnitude of the induced
polarization field is directly proportional to the magnitude of E, and it is said to be
isotropic if the polarization field and E are in the same direction.

A medium is said to be homogenous if its constitutive parameters (&,u and c) are
constant throughout the medium.

—_ —_

P=¢, E,

wherey, is called the electric susceptibility of the material. Thus we have

—

D= SOE + 80xeﬁ
=g, (1+ Xe)ﬁ = SE,

which defines the permittivity of the material as

8:80(1+Xe)

In reality, if E exceeds a certain critical value, known as the dielectric strength of the
material, it will free the electrons completely from the molecules and cause them to
accelerate through the material in the form of a conducting current. When this happens,
sparking can occur, and the dielectric material can sustain permanent damage due to
electron collision with the molecular structure. This abrupt change in behavior is called
dielectric breakdown.
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