1. Overview:

The magnetic fields in a medium with magnetic permeability μ are governed by the second pair of Maxwell's equations,

$$\vec{\nabla} \cdot \vec{\mathbf{B}} = 0,$$
$$\vec{\nabla} \times \vec{\mathbf{H}} = \vec{\mathbf{J}}.$$

where \vec{J} is the current density. The magnetic flux density \vec{B} and the magnetic field intensity \vec{H} are related by

$$\vec{\mathbf{B}} = \mu \vec{\mathbf{H}}$$

With the exception of ferromagnetic materials, for which the relation ship between \vec{B} and \vec{H} in nonlinear, most materials are characterized by constant magnetic permeability. Furthermore, $\mu = \mu_o$ for most dielectrics and metals (excluding ferromagnetic materials)

Attribute	Electrostatics	Magnetostatics
Sources	Stationary charges	Steady currents
Fields	${f E}$ and ${f D}$	H and B
Constitutive parameter(s)	ε and σ	μ
Governing equations Differential form 	$\nabla \cdot \mathbf{D} = \rho_{\mathrm{v}}$	$\nabla \cdot \mathbf{B} = 0$
• Integral form	$\nabla \times \mathbf{E} = 0$ $\oint_{S} \mathbf{D} \cdot d\mathbf{s} = Q$ $\oint_{C} \mathbf{E} \cdot d\mathbf{l} = 0$	$\nabla \times \mathbf{H} = \mathbf{J}$ $\oint_{S} \mathbf{B} \cdot d\mathbf{s} = 0$ $\oint_{C} \mathbf{H} \cdot d\mathbf{l} = I$
Potential	Scalar V, with $\mathbf{E} = -\nabla V$	Vector A , with $\mathbf{B} = \nabla \times \mathbf{A}$
Energy density	$w_{\rm e} = \frac{1}{2} \varepsilon E^2$	$w_{\rm m} = \frac{1}{2} \mu H^2$
Force on charge q	$\mathbf{F}_{\mathrm{e}} = q \mathbf{E}$	$\mathbf{F}_{\mathrm{m}} = q\mathbf{u} \times \mathbf{B}$
Circuit element(s)	C and R	L

Attributes of electrostatics and magnetostatics.

2. Magnetic Forces and Torques:

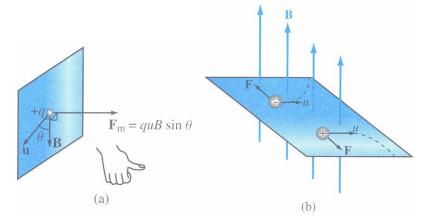
The magnetic flux density \vec{B} at a point in space in terms of the magnetic force \vec{F}_m that would be exerted on a charged particle moving with a velocity \vec{u} were it to be passing through that point. The magnetic force \vec{F}_m acting on a particle of charge q can be cast in the form

$$\vec{\mathbf{F}}_{\mathrm{m}} = q \, \vec{\mathbf{u}} \times \vec{\mathbf{B}} \qquad (N)$$

For a positively charged particle, the direction of $\overrightarrow{\mathbf{F}_{m}}$ is in the direction of the cross product $\vec{\mathbf{u}} \times \vec{\mathbf{B}}$, which is perpendicular to the plane containing $\vec{\mathbf{u}}$ and $\vec{\mathbf{B}}$ and governed by the right-hand rule. The magnitude of $\overrightarrow{\mathbf{F}_{m}}$ is given by

$$F_m = q \, u B \, \sin \theta, \qquad (N)$$

where θ is the angle between $\vec{\mathbf{u}}$ and $\vec{\mathbf{B}}$. We note that $F_{\rm m}$ is maximum when $\vec{\mathbf{u}}$ is perpendicular to $\vec{\mathbf{B}}$ ($\theta = 90^{\circ}$), and it is zero when $\vec{\mathbf{u}}$ is parallel to $\vec{\mathbf{B}}$ ($\theta = 0$ or 180°).



The direction of the magnetic force exerted on a charged particle moving in a magnetic field is (a) perpendicular to both \vec{B} and \vec{u} and (b) depends on the charge polarity (positive or negative).

If a charged particle is in the presence of both electric field \vec{E} and a magnetic field \vec{B} , the total electromagnetic force acting on it is

$$\vec{\mathbf{F}}_{\mathbf{e}} + \vec{\mathbf{F}}_{\mathbf{m}} = q \vec{\mathbf{E}} + q \vec{\mathbf{u}} \times \vec{\mathbf{B}} = q (\vec{\mathbf{E}} + \vec{\mathbf{u}} \times \vec{\mathbf{B}})$$

The force expressed in this equation is known as the Lorentz force. Electric and Magnetic forces exhibit a number of important differences:

- 1. Whereas the electric force is always in the direction of the electric field, the magnetic force is always perpendicular to the magnetic filed.
- 2. Whereas the electric force acts on a charged particle whether or not it is moving, the magnetic force acts on it only when it is in motion
- 3. Whereas the electric force expends energy in displacing a charged particle, the magnetic force does no work when a particle is displaced.

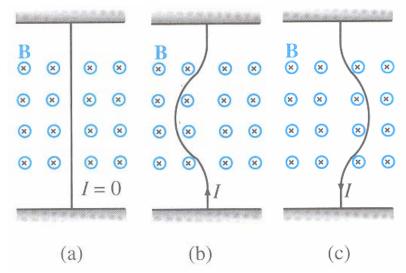
Because the magnetic force $\overrightarrow{\mathbf{F}_{m}}$ is always perpendicular to $\vec{\mathbf{u}}$, $\overrightarrow{\mathbf{F}_{m}} \cdot \vec{\mathbf{u}} = 0$. Hence, the work performed when a particle is displaced by a differential distance $\vec{d} \cdot \vec{\mathbf{l}} = \vec{\mathbf{u}} \cdot dt$ is

$$dW = \overrightarrow{\mathbf{F}_{\mathbf{m}}} \cdot \overrightarrow{d\mathbf{l}} = \left(\overrightarrow{\mathbf{F}_{\mathbf{m}}} \cdot \overrightarrow{\mathbf{u}}\right) dt = 0$$

Since no work is done, a magnetic field cannot change the kinetic energy of a charged particle; the magnetic field can change the direction of motion of a charged particle, but it cannot change its speed.

2.1. <u>Magnetic Force on a current-Carrying Conductor</u>

Consider the arrangement shown in figure in which a vertical wire oriented along the z-direction is placed in a magnetic field \vec{B} (produced by a magnet) oriented along the $-\hat{x}$ -direction (into the page).



When a slightly flexible vertical is placed in a magnetic field directed into the page (as denoted by the crosses), it is (a) not deflected when the current through it is zero, (b) deflected to the left when I is upward, and (c) deflected to the right when I is downward.

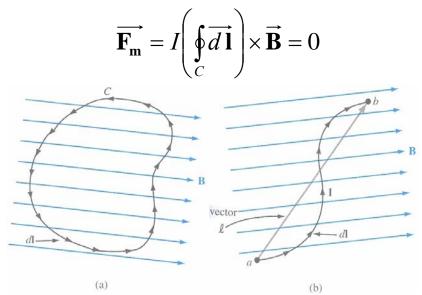
When a current is introduced in the wire, the wire deflects to the left $(-\hat{\mathbf{y}} - \text{direction})$ if the current's direction is upward $(+\hat{\mathbf{z}} - \text{direction})$, and it deflects to the right $(+\hat{\mathbf{y}}$ direction) if the current's direction is downward $(-\hat{\mathbf{z}} - \text{direction})$.

For a closed circuit of contour C carrying a current I, the total magnetic force is

$$\mathbf{F}_{\mathbf{m}} = I \oint_{C} d\mathbf{l} \times \mathbf{B} \qquad (N) \qquad (*)$$

Closed Circuit in a Uniform B Field

Consider a closed wire carrying a current I and placed in a uniform external magnetic field B, as shown in figure. Since \vec{B} is constant, it can be taken outside the integral of equation (*), in which case we have



In a uniform magnetic field, (a) the net force on a closed current loop is zero because the integral of the displacement vector $d\mathbf{l}$ over a closed contour is zero, and (b) the force on a line segment is proportional to the vector between the end point

$$(\vec{\mathbf{F}_{\mathbf{m}}} = I\vec{\ell} \times \vec{\mathbf{B}})$$

So, the total magnetic force on any closed current loop in a uniform magnetic field is zero.

Curved Wire in a Uniform B Field

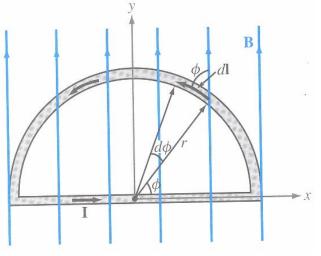
If we are interested in the magnetic force exerted on wire segment, such shown in the figure (b), when placed in a uniform field B, then equation (*) becomes

$$\overrightarrow{\mathbf{F}_{\mathbf{m}}} = I\left(\int_{a}^{b} \overrightarrow{d} \, \overrightarrow{\mathbf{l}}\right) \times \overrightarrow{\mathbf{B}} = I \overrightarrow{\ell} \times \overrightarrow{\mathbf{B}},$$

where $\vec{\ell}$ is the vector directed from *a* to *b*, as shown in figure (b). The integral of \vec{dl} from *a* to *b* has the same value irrespective of the path taken between *a* and *b*.

Example: Force on a Semicircular Conductor

The semicircular conductor shown in the figure lies in the *x*-*y* plane and caries a current *I*. The closed circuit is exposed to a uniform magnetic field $\vec{\mathbf{B}} = \hat{\mathbf{y}}B_o$.



Semicircular conductor in a uniform field

Determine,

- a) The magnetic force $\overrightarrow{F_1}$ on the straight section of the wire.
- b) The force $\overrightarrow{\mathbf{F}}_2$ on the curved section.

Solution:

a) The straight section of the circuit is of length 2r, and flowing through it is along the $+\hat{\mathbf{x}}$ -direction. With $\vec{\ell} = \hat{\mathbf{x}} 2r$ we will have,

$$\vec{\mathbf{F}}_{1} = \hat{\mathbf{x}} \left(2\boldsymbol{I} \, r \right) \times \hat{\mathbf{y}} B_{o} = \hat{\mathbf{z}} \, 2\boldsymbol{I} \, r B_{o} \tag{N}$$

b) Let us consider a segment of differential length \vec{dl} on the curved part of the circle. The direction of \vec{dl} is chosen to coincide with the direction of the current. Since \vec{dl} and \vec{B} are both in the *x*-*y* plane, their cross product $\vec{dl} \times \vec{B}$ points in the negative *z*-direction, and the magnitude of $\vec{dl} \times \vec{B}$ is proportional to $\sin \varphi$, where φ is the angle between \vec{dl} and \vec{B} . Moreover, the magnitude of \vec{dl} is $dl = r d\varphi$. Hence,

$$\vec{\mathbf{F}}_{2} = I \int_{\varphi=0}^{\pi} \vec{d} \, \vec{\mathbf{l}} \times \vec{\mathbf{B}}$$
$$= -\hat{\mathbf{z}} \, \mathbf{I} \int_{\varphi=0}^{\pi} r \, B_{o} \, \sin \phi \, d\phi = -\hat{\mathbf{z}} \, 2 \mathbf{I} r B_{o} \quad (N)$$

We note that $\overrightarrow{\mathbf{F}_2} = -\overrightarrow{\mathbf{F}_1}$, and consequently the net force on the closed loop is zero.