
1. Overview: 
 

The magnetic fields in a medium with magnetic permeability µ are governed by the 
second pair of Maxwell’s equations, 
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where J  is the current density. The magnetic flux density B  and the magnetic field 
intensity H  are related by  
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With the exception of ferromagnetic materials, for which the relation ship between B  
and H in nonlinear, most materials are characterized by constant magnetic permeability. 
Furthermore, µ = µo for most dielectrics and metals (excluding ferromagnetic materials) 

 
 
 



2. Magnetic Forces and Torques: 
 

The magnetic flux density B  at a point in space in terms of the magnetic force mF  

that would be exerted on a charged particle moving with a velocity u  were it to be 

passing through that point. The magnetic force mF  acting on a particle of charge q can 
be cast in the form 
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For a positively charged particle, the direction of mF is in the direction of the cross 

product B  u× , which is perpendicular to the plane containing u  and B  and governed by 

the right-hand rule. The magnitude of mF  is given by  
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where θ is the angle between u  and B . We note that  is maximum when mF u  is 

perpendicular to B  (θ = 90o), and it is zero when u  is parallel to B  (θ = 0 or 180o). 

 
 
The direction of the magnetic force exerted on a charged particle 
moving in a magnetic field is (a) perpendicular to both B  and u  
and (b) depends on the charge polarity (positive or negative). 

 
If a charged particle is in the presence of both electric field E  and a magnetic field 

B , the total electromagnetic force acting on it is 
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The force expressed in this equation is known as the Lorentz force. Electric and 
Magnetic forces exhibit a number of important differences: 
 

1. Whereas the electric force is always in the direction of the electric field, the 
magnetic force is always perpendicular to the magnetic filed. 

2. Whereas the electric force acts on a charged particle whether or not it is moving, the 
magnetic force acts on it only when it is in motion 

3. Whereas the electric force expends energy in displacing a charged particle, the 
magnetic force does no work when a particle is displaced. 

 

Because the magnetic force mF  is always perpendicular to u , 0=⋅uFm . Hence, the 

work performed when a particle is displaced by a differential distance dt d ul = is  
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Since no work is done, a magnetic field cannot change the kinetic energy of a charged 
particle; the magnetic field can change the direction of motion of a charged particle, but it 
cannot change its speed. 
 
2.1. Magnetic Force on a current-Carrying Conductor 
 
Consider the arrangement shown in figure in which a vertical wire oriented 
along the z-direction is placed in a magnetic field B  (produced by a 
magnet) oriented along the   -direction (into the page).  x̂−

 
When a slightly flexible vertical is placed in a magnetic field directed into the page 

(as denoted by the crosses), it is (a) not deflected when the current through it is zero, (b) 
deflected to the left when I is upward, and (c) deflected to the right when I is downward.  

 
 



When a current is introduced in the wire, the wire deflects to the left ( -direction) 
if the current’s direction is upward (

ŷ−
ẑ+ -direction), and it deflects to the right ( ŷ+ -

direction) if the current’s direction is downward ( ẑ− -direction). 
For a closed circuit of contour C carrying a current I, the total magnetic force is  
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Closed Circuit in a Uniform B  Field 

Consider a closed wire carrying a current I and placed in a uniform external magnetic 
field B, as shown in figure. Since B  is constant, it can be taken outside the integral of 
equation , in which case we have )(∗
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In a uniform magnetic field, (a) the net force on a closed 
current loop is zero because the integral of the displacement 
vector dl over a closed contour is zero, and (b) the force on a 
line segment is proportional to the vector between the end point  

( BFm ×= lI ). 
So, the total magnetic force on any closed current loop in a uniform magnetic field is 
zero. 
 
Curved Wire in a Uniform B Field 

If we are interested in the magnetic force exerted on wire segment, such shown in the 
figure (b), when placed in a uniform field B, then equation )(∗  becomes 
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where l  is the vector directed from a to b, as shown in figure (b). The integral of ld  
from a to b has the same value irrespective of the path taken between a and b. 
 
 
Example: Force on a Semicircular Conductor 
 

The semicircular conductor shown in the figure lies in the x-y plane and caries a 
current I. The closed circuit is exposed to a uniform magnetic field oByB ˆ= . 

 
Semicircular conductor in a uniform field  

 
Determine, 

a) The magnetic force 1F on the straight section of the wire. 

b) The force 2F  on the curved section. 
 
Solution: 
 

a) The straight section of the circuit is of length 2r, and flowing through it is along 

the -direction. With x̂+ r2x̂=l we will have, 
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b) Let us consider a segment of differential length ld  on the curved part of the 

circle. The direction of ld  is chosen to coincide with the direction of the current. 

Since ld  and B  are both in the x-y plane, their cross product Bl×d  points in the 

negative z-direction, and the magnitude of Bl×d  is proportional to  ,   where 

 is the angle between 
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Hence,  
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 We note that 12 FF −= , and consequently the net force on the closed loop is zero. 
 
 
 
 
 
 
 
 
 
 


