## American University of Beirut

Department of Electrical and Computer Engineering

EECE 311 – Electronic Circuits

Homework 2 Solution

Spring 2008 - 2009

Problem 1.

## Problem 1 – Frequency Response [52 pts]

a) [2 pts] A direct-coupled amplifier has a low-frequency gain of 36 dB, poles at 15 KHz, 72 KHz, and 300 KHz, a zero at 105 KHz, and two more zeros at infinity. Express the amplifier

gain function in the form: 
$$A(s) = A_{M} \frac{\left(1 + \frac{s}{\omega_{z1}}\right) \left(1 + \frac{s}{\omega_{z2}}\right) \cdots \left(1 + \frac{s}{\omega_{zn}}\right)}{\left(1 + \frac{s}{\omega_{p1}}\right) \left(1 + \frac{s}{\omega_{p2}}\right) \cdots \left(1 + \frac{s}{\omega_{pn}}\right)}.$$

 $\begin{aligned} & 20 \log A_m = 36 \ dB \ \Rightarrow A_m = 63.1 \\ & \omega_{p1} = 2\pi \times (15K) = 94.25 \ Krad/s \\ & \omega_{p2} = 2\pi \times (72K) = 452.39 \ Krad/s \\ & \omega_{p3} = 2\pi \times (300K) = 1884.96 \ Krad/s \\ & \omega_{z1} = 2\pi \times (105K) = 659.73 \ Krad/s \\ & \Rightarrow A(s) = 63.1 \times \frac{\left(1 + \frac{s}{659.73K}\right)}{\left(1 + \frac{s}{94.25K}\right)\left(1 + \frac{s}{452.39K}\right)\left(1 + \frac{s}{1884.96K}\right)} \end{aligned}$ 

b) [8 pts] Sketch the Bode plot for the magnitude of the gain.



c) Calculate the 3-dB frequency  $f_H$  for this amplifier using:

i) [2 pts] the dominant pole approximation

Since the pole at 15 KHz is more than 2 octaves below all the other poles, the dominant pole is the one at 15 KHz  $\Rightarrow$  f<sub>H</sub> = 15 KHz.

ii) [4 pts] the definition of the 3-dB frequency (i.e. find the exact value of  $f_H$ ).

$$|F(j\omega)| = \frac{1}{\sqrt{2}} = \frac{\sqrt{\left(1 + \left(\frac{\omega}{659.73K}\right)^2\right)}}{\sqrt{\left(1 + \left(\frac{\omega}{94.25K}\right)^2\right)}\sqrt{\left(1 + \left(\frac{\omega}{452.39K}\right)^2\right)}\sqrt{\left(1 + \left(\frac{\omega}{1884.96K}\right)^2\right)}}$$
  
By using MATLAB we get:  $\omega_H = 92.02 \ Krad/s \Rightarrow f_H = 14.645 \ KHz$ 

iii) [2 pts] What is the error (in %) in the value of  $f_H$  due to the dominant pole approximation?

The % error is:  $\frac{|14.645-15|}{15}\times 100\%=2.37\%~$  (over-estimated in this case by the dominant pole approximation)

d) Calculate the frequency  $f_t$  at which the gain of the amplifier becomes unity (or 0 dB) using: i) [2 pts] the dominant pole approximation

By the dominant pole approximation we can use  $f_t = A_m \times f_H = 946.5 \text{ KHz}$ 

ii) [5 pts] the definition of  $f_t$ .

$$\begin{split} |F(j\omega)| &= 1 = 63.1 \times \frac{\sqrt{\left(1 + \left(\frac{\omega}{659.73K}\right)^2\right)}}{\sqrt{\left(1 + \left(\frac{\omega}{94.25K}\right)^2\right)}\sqrt{\left(1 + \left(\frac{\omega}{452.39K}\right)^2\right)}\sqrt{\left(1 + \left(\frac{\omega}{1884.96K}\right)^2\right)}} \\ By \, using \, \textit{MATLAB we get: } \omega_t &= 2498.11 \, \textit{Krad/s} \ \Rightarrow f_t = 397.587 \, \textit{KHz} \end{split}$$

iii) [5 pts] Comment on the usefulness of the dominant pole approximation in estimating  $f_t$ .

The dominant pole approximation is **not** useful in approximating  $f_{tr}$  unless there is only one

e) Verify using PSpice the values of  $f_H$  [5 pts] and  $f_t$  [5 pts] calculated above. Use

```
Homework 2 Problem 1
.PARAM pi=3.141593
Vin 1 0 AC 1
Rin 1 0 1
Eamp 2 0 Laplace {V(1)}={ your gain function here }
Rout 2 0 1
.AC DEC 20 1Hz 1000KHz
.Probe
.End
```

and plot dB(v(2)).



f) [8 pts] Sketch the Bode plot for the phase of the gain.



g) [4 pts] Verify using PSpice the results of part (f). Change the .AC statement to .AC DEC 20 1Hz 10MegHz The phase is obtained by plotting p(v(2)).



## Problem 2 – Common Source Amplifier [20 pts]

The common-source stage shown below must provide a voltage gain of 10 and has a *power budget* of 500  $\mu$ W.

![](_page_4_Figure_2.jpeg)

The technology parameters are:  $k'_n = 330 \ \mu A/V^2$ ,  $V_{tn} = 0.4 \ V$ ,  $V_{An} = 6 \ V$ ,  $k'_p = 120 \ \mu A/V^2$ ,  $V_{tp} = -0.45 \ V$ , and  $|V_{Ap}| = 5 \ V$ .

Assume in the following that for the DC quantities:  $I_D \simeq \frac{1}{2} k' \left(\frac{W}{L}\right) V_{OV}^2$ .

a) [10 pts] Find the value of  $(W/L)_1$ 

$$\begin{split} I_{DD} &= \frac{P}{V_{DD}} = 0.277 \ mA \\ r_{o1} &= \frac{V_{AN}}{I} = 21.6 \ K\Omega, \ r_{o2} = \frac{V_{AP}}{I} = 18.1 \ K\Omega \\ |A_{V1}| &= g_{m1}(r_{o1}/r_{o2}) \Rightarrow g_{m1} = 1.015 \ mA/V \\ But, g_{m1} &= \frac{2I}{V_{OV1}} \Rightarrow V_{OV1} = 0.546 \ V \\ I &= \frac{1}{2} k'_n \left(\frac{W}{L}\right)_n V_{OV1}^2 \Rightarrow \left(\frac{W}{L}\right)_n = 5.63 \end{split}$$

b) [10 pts] Find the required value of  $V_{\text{BIAS}}$  if  $(W/L)_2$  is (18/0.18).

$$I = \frac{1}{2}k'_p \left(\frac{W}{L}\right)_2 V_{OV2}^2, in \ Q2$$
$$V_{OV2} = 0.215 \ V \Rightarrow V_{OV2} = V_{DD} - V_{BIAS} - |V_{tp}| \Rightarrow V_{BIAS} = 1.135 \ V$$

## Problem 3 – Miller's Theorem [28 pts]

Use Miller's theorem to estimate the input [12 pts] and output [16 pts] poles of the circuit shown below, in terms of  $C_{\rm F}$ ,  $R_{\rm B}$ ,  $R_{\rm C}$ , and the small-signal parameters of  $Q_1$  and  $Q_2$  ( $g_{\rm m1}$ ,  $g_{\rm m2}$ ,  $r_{\pi 1}$ ,  $r_{\pi 2}$ ,  $r_{01}$ , &  $r_{02}$ )

You may use  $\beta = g_m r_{\pi}$ 

 $C_{\rm F}$  is much larger than the *internal* BJT capacitors, and they can be neglected.

The current source is ideal.

![](_page_5_Figure_5.jpeg)

The two BJT's in this circuit are cascaded, so the total gain is the product of the gain of each BJT stage independently. The gain of the first stage is  $-g_{m1}$  ( $R_C$  //  $r_{o1}$  //  $R_{in2}$ ). The input resistance of stage 2 is  $R_{in2}$  =  $(\beta+1)(r_{e2}+r_{o2})$ , which is much larger than  $r_{o1}$  //  $R_{C}$  and may be neglected. The gain of the second stage is  $r_{o2}/(r_{o2}+r_{e2})$ , which is very close to 1, since  $r_o >> r_e$  $\Rightarrow K \cong -g_{m1}(R_c//r_{o1}) \times 1$ by Miller's theorem we can seperate C<sub>F</sub> in to 2 different capacitors, one on the side of the input and one on the input. At the input:  $C_{in} = C_F(1 - K)$ At the output:  $C_{out} = C_F \left(1 - \frac{1}{K}\right)$ The resistance seen by C<sub>in</sub> is:  $R_{Cin} = (R_B / / r_{\pi 1})$ The resistance seen by  $C_{out}$ : Replace  $C_{out}$  by a current source  $I_x$  having voltage  $V_x$ , or use the The resistance is equation on page 485 in the textbook.  $R_{Cout} = \frac{V_x}{I_x} = \frac{(r_{\pi 2} + R_C / / r_{o1})r_{o2}}{(1 + \beta)r_{o2} + r_{\pi 2} + R_C / / r_{o1}}$ \* the pole at the input is:  $\frac{1}{R_{Cin}C_{in}} = \frac{1}{(R_B / / r_{\pi 1})C_F(1 + g_{m1}(R_C / / r_{o1}))}$ \* the pole at the output is:  $\frac{1}{R_{cout}C_{out}} = \frac{(1+\beta)r_{o2} + r_{\pi 2} + R_C//r_{o1}}{(r_{\pi 2} + R_C//r_{o1})r_{o2}C_F\left(1 + \frac{1}{g_{m1}(R_C//r_{o1})}\right)}$