American University of Beirut

Department of Electrical and Computer Engineering
EECE 311 - Electronic Circuits
Spring 2008-2009

Homework 2 Solution

Problem 1.

Problem 1 - Frequency Response [52 pts]

a) [2 pts] A direct-coupled amplifier has a low-frequency gain of 36 dB , poles at $15 \mathrm{KHz}, 72$ KHz , and 300 KHz , a zero at 105 KHz , and two more zeros at infinity. Express the amplifier
gain function in the form: $\quad A(s)=A_{M} \frac{\left(1+\frac{s}{\omega_{z 1}}\right)\left(1+\frac{s}{\omega_{z 2}}\right) \cdots\left(1+\frac{s}{\omega_{z n}}\right)}{\left(1+\frac{s}{\omega_{p 1}}\right)\left(1+\frac{s}{\omega_{p 2}}\right) \cdots\left(1+\frac{s}{\omega_{p n}}\right)}$.

$$
\begin{aligned}
& 20 \log A_{m}=36 \mathrm{~dB} \Rightarrow A_{m}=63.1 \\
& \omega_{p 1}=2 \pi \times(15 \mathrm{~K})=94.25 \mathrm{Krad} / \mathrm{s} \\
& \omega_{p 2}=2 \pi \times(72 \mathrm{~K})=452.39 \mathrm{Krad} / \mathrm{s} \\
& \omega_{p 3}=2 \pi \times(300 \mathrm{~K})=1884.96 \mathrm{Krad} / \mathrm{s} \\
& \omega_{z 1}=2 \pi \times(105 \mathrm{~K})=659.73 \mathrm{Krad} / \mathrm{s} \\
& \Rightarrow A(\mathrm{~s})=63.1 \times \frac{\mathrm{s}}{\left(1+\frac{s}{94.25 \mathrm{~K}}\right)\left(1+\frac{s}{452.39 \mathrm{~K}}\right)\left(1+\frac{s}{1884.96 \mathrm{~K}}\right)}
\end{aligned}
$$

b) [8 pts] Sketch the Bode plot for the magnitude of the gain.

c) Calculate the 3-dB frequency f_{H} for this amplifier using:
i) [2 pts] the dominant pole approximation

Since the pole at 15 KHz is more than 2 octaves below all the other poles, the dominant pole is the one at $15 \mathrm{KHz} \Rightarrow \mathrm{f}_{\mathrm{H}}=15 \mathrm{KHz}$.
ii) [4 pts] the definition of the $3-\mathrm{dB}$ frequency (i.e. find the exact value of f_{H}).

$$
|F(j \omega)|=\frac{1}{\sqrt{2}}=\frac{\sqrt{\left(1+\left(\frac{\omega}{659.73 K}\right)^{2}\right)}}{\sqrt{\left(1+\left(\frac{\omega}{94.25 K}\right)^{2}\right)} \sqrt{\left(1+\left(\frac{\omega}{452.39 K}\right)^{2}\right)} \sqrt{\left(1+\left(\frac{\omega}{1884.96 K}\right)^{2}\right)}}
$$

By using MATLAB we get: $\omega_{H}=92.02 \mathrm{Krad} / \mathrm{s} \Rightarrow f_{H}=14.645 \mathrm{KHz}$
iii) [2 pts] What is the error (in \%) in the value of f_{H} due to the dominant pole approximation?

The $\%$ error is: $\frac{|14.645-15|}{15} \times 100 \%=2.37 \%$ (over-estimated in this case by the dominant pole approximation)
d) Calculate the frequency $\boldsymbol{f}_{\boldsymbol{t}}$ at which the gain of the amplifier becomes unity (or 0 dB) using:
i) [2 pts] the dominant pole approximation

By the dominant pole approximation we can use $f_{t}=A_{m} \times f_{H}=946.5 \mathrm{KHz}$
ii) [5 pts] the definition of f_{t}.

$$
|F(j \omega)|=1=63.1 \times \frac{\sqrt{\left(1+\left(\frac{\omega}{659.73 K}\right)^{2}\right)}}{\sqrt{\left(1+\left(\frac{\omega}{94.25 K}\right)^{2}\right)} \sqrt{\left(1+\left(\frac{\omega}{452.39 K}\right)^{2}\right)} \sqrt{\left(1+\left(\frac{\omega}{1884.96 K}\right)^{2}\right)}}
$$

By using MATLAB we get: $\omega_{t}=2498.11 \mathrm{Krad} / \mathrm{s} \Rightarrow f_{t}=397.587 \mathrm{KHz}$
iii) [5 pts] Comment on the usefulness of the dominant pole approximation in estimating f_{t}.

The dominant pole approximation is not useful in approximating f_{t}, unless there is only one
e) Verify using PSpice the values of $f_{H}[5 \mathrm{pts}]$ and $f_{t}[5 \mathrm{pts}]$ calculated above. Use

```
Homework 2 Problem 1
```

.PARAM pi=3.141593
Vin 10 AC 1
Rin 101
Eamp 20 Laplace $\{\mathrm{V}(1)\}=\{$ your gain function here $\}$
Rout 201
.AC DEC 201 Hz 1000 KHz
. Probe
. End
and plot $\mathrm{dB}(\mathrm{v}(2))$.

f) [8 pts] Sketch the Bode plot for the phase of the gain.

g) [4 pts] Verify using PSpice the results of part (f). Change the .AC statement to .AC DEC 201 Hz 10 MegHz
The phase is obtained by plotting $\mathrm{p}(\mathrm{v}(2))$.

Problem 2 - Common Source Amplifier [20 pts]

The common-source stage shown below must provide a voltage gain of 10 and has a power budget of $500 \mu \mathrm{~W}$.

The technology parameters are: $k_{n}^{\prime}=330 \mu \mathrm{~A} / \mathrm{V}^{2}, V_{t n}=0.4 \mathrm{~V}, V_{A n}=6 \mathrm{~V}$, $k_{p}^{\prime}=120 \mu \mathrm{~A} / \mathrm{V}^{2}, V_{t p}=-0.45 \mathrm{~V}$, and $\left|V_{A p}\right|=5 \mathrm{~V}$.

Assume in the following that for the DC quantities: $I_{D} \simeq \frac{1}{2} k^{\prime}\left(\frac{W}{L}\right) V_{O V}^{2}$.
a) $[10 \mathrm{pts}]$ Find the value of $(W / L)_{1}$

$$
\begin{aligned}
& I_{D D}=\frac{P}{V_{D D}}=0.277 \mathrm{~mA} \\
& r_{o 1}=\frac{V_{A N}}{I}=21.6 \mathrm{~K} \Omega, \quad r_{o 2}=\frac{V_{A P}}{I}=18.1 \mathrm{~K} \Omega \\
& \left|A_{V 1}\right|=g_{m 1}\left(r_{o 1} / / r_{o 2}\right) \Rightarrow g_{m 1}=1.015 \mathrm{~mA} / \mathrm{V} \\
& \text { But, } g_{m 1}=\frac{2 I}{V_{O V 1}} \Rightarrow V_{O V 1}=0.546 \mathrm{~V} \\
& I=\frac{1}{2} k_{n}^{\prime}\left(\frac{W}{L}\right)_{n} V_{O V 1}^{2} \Rightarrow\left(\frac{W}{L}\right)_{n}=5.63
\end{aligned}
$$

b) $[10 \mathrm{pts}]$ Find the required value of V_{BIAS} if $(W / L)_{2}$ is $(18 / 0.18)$.

$$
\begin{aligned}
& I=\frac{1}{2} k_{p}^{\prime}\left(\frac{W}{L}\right)_{2} V_{O V 2}^{2}, \text { in } Q 2 \\
& V_{O V 2}=0.215 \mathrm{~V} \Rightarrow V_{O V 2}=V_{D D}-V_{B I A S}-\left|V_{t p}\right| \Rightarrow V_{B I A S}=1.135 \mathrm{~V}
\end{aligned}
$$

Problem 3 - Miller's Theorem [28 pts]

Use Miller's theorem to estimate the input [12 pts] and output [16 pts] poles of the circuit shown below, in terms of $C_{\mathrm{F}}, R_{\mathrm{B}}, R_{\mathrm{C}}$, and the small-signal parameters of Q_{1} and $Q_{2}\left(g_{\mathrm{m} 1}, g_{\mathrm{m} 2}\right.$,
$r_{\pi 1}, r_{\pi 2}, r_{\mathrm{o} 1}, \& r_{\mathrm{o} 2}$)
You may use $\beta=g_{m} r_{\pi}$.
C_{F} is much larger than the internal BJT capacitors, and they can be neglected.
The current source is ideal.

The two BJT's in this circuit are cascaded, so the total gain is the product of the gain of each BJT stage independently.

The gain of the first stage is $-g_{\mathrm{m} 1}\left(R_{\mathrm{C}} / / r_{\mathrm{o} 1} / / R_{\mathrm{in} 2}\right)$. The input resistance of stage 2 is $R_{\mathrm{in} 2}=$ ($\beta+1)\left(r_{\mathrm{e} 2}+r_{\mathrm{o} 2}\right)$, which is much larger than $r_{01} / / R_{\mathrm{C}}$ and may be neglected.
The gain of the second stage is $r_{02} /\left(r_{02}+r_{e 2}\right)$, which is very close to 1 , since $r_{0} \gg r_{e}$
$\Rightarrow K \cong-g_{m 1}\left(R_{c} / / r_{o 1}\right) \times 1$
by Miller's theorem we can seperate
C_{F} in to 2 different capacitors, one on the
side of the input and one on the input.
At the input: $C_{i n}=C_{F}(1-K)$
At the output: $C_{\text {out }}=C_{F}\left(1-\frac{1}{K}\right)$
The resistance seen by $\mathrm{C}_{\text {in }}$ is:
$R_{\text {Cin }}=\left(R_{B} / / r_{\pi 1}\right)$
The resistance seen by $C_{\text {out }}$: Replace $C_{\text {out }}$ by a current source I_{x} having voltage V_{x}, or use the equation on page 485 in the textbook:

$$
R_{\text {Cout }}=\frac{V_{x}}{I_{x}}=\frac{\left(r_{\pi 2}+R_{C} / / r_{o 1}\right) r_{o 2}}{(1+\beta) r_{o 2}+r_{\pi 2}+R_{C} / / r_{o 1}}
$$

* the pole at the input is: $\frac{1}{R_{\text {Cin }} C_{i n}}=\frac{1}{\left(R_{B} / / r_{\pi 1}\right) C_{F}\left(1+g_{m 1}\left(R_{c} / / r_{o 1}\right)\right)}$
* the pole at the output is: $\frac{1}{R_{\text {Cout }} C_{\text {out }}}$

$$
=\frac{(1+\beta) r_{o 2}+r_{\pi 2}+R_{C} / / r_{o 1}}{\left(r_{\pi 2}+R_{C} / / r_{o 1}\right) r_{o 2} C_{F}\left(1+\frac{1}{g_{m 1}\left(R_{c} / / r_{o 1}\right)}\right)}
$$

