AMERICAN UNIVERSITY OF BEIRUT
MATH 101 - Calculus \& Analytic Geometry I
Fall Semester 2013-14
Mid-term Exam 1
Saturday 5 October, 2013

Time: 1 hour

Name: \qquad ID: \qquad

Circle your recitation section:

1	2	3	4	5
Fri 9am	Fri 10am	Fri 4pm	Fri 11am	Thurs 2pm
6				
6	7	8	9	10
Thurs 11am	Thurs 12:30pm	Mon 8am	Mon 9am	Mon 2pm

The backs of the pages may be used as scratch paper.
Please do not open this paper until you are instructed to do so.

Question:	1	2	3	4	5	6	Total
Points:	6	15	10	6	9	14	60
Score:							

1. Here is the graph of a piecewise-defined function $f(x)$.

(a) (4 points) Fill in the blanks:

$$
\begin{array}{ll}
\lim _{x \rightarrow-1^{-}} f(x)=3 & \lim _{x \rightarrow-1^{+}} f(x)=1 \\
\lim _{x \rightarrow 4^{-}} f(x)=-3 & \lim _{x \rightarrow 0} f(x)=0
\end{array}
$$

(b) (2 points) Is f continuous at $x=0$? Justify your answer.

Solution: We have $\lim _{x \rightarrow 0} f(x)=0$, but $f(0)=-1$. So f is not continuous at $x=0$.
2. (15 points) Calculate the following limits. Show your working.
(a) $\lim _{x \rightarrow 0} \frac{\cos x+1}{5 x-2}$

Solution:

$$
\lim _{x \rightarrow 0} \frac{\cos x+1}{5 x-2}=\frac{\lim _{x \rightarrow 0} \cos x+\lim _{x \rightarrow 0} 1}{\lim _{x \rightarrow 0} 5 x-\lim _{x \rightarrow 0} 2}=\frac{1+1}{0-2}=-1 .
$$

(b) $\lim _{x \rightarrow 2} \sqrt{\frac{x^{2}-3 x+2}{x^{2}-4}}$

Solution:

$$
\lim _{x \rightarrow 2} \sqrt{\frac{x^{2}-3 x+2}{x^{2}-4}}=\lim _{x \rightarrow 2} \sqrt{\frac{(x-2)(x-1)}{(x-2)(x+2)}}=\lim _{x \rightarrow 2} \sqrt{\frac{x-1}{x+2}}=\frac{1}{2} .
$$

(c) $\lim _{x \rightarrow \infty} \frac{2 x+1}{x^{2}-9}$

Solution:

$$
\lim _{x \rightarrow \infty} \frac{2 x+1}{x^{2}-9}=\lim _{x \rightarrow \infty} \frac{2 / x^{2}+1 / x}{1-9 / x^{2}}=\frac{0}{1}=0 .
$$

(d) $\lim _{x \rightarrow 7} \frac{\sqrt{x+2}-3}{x-7}$

Solution:

$$
\begin{aligned}
\lim _{x \rightarrow 7} \frac{\sqrt{x+2}-3}{x-7}=\lim _{x \rightarrow 7} & \frac{(\sqrt{x+2}-3)(\sqrt{x+2}+3)}{(x-7)(\sqrt{x+2}+3)} \\
& =\lim _{x \rightarrow 7} \frac{x-7}{(x-7)(\sqrt{x+2}+3)}=\lim _{x \rightarrow 7} \frac{1}{\sqrt{x+2}+3}=\frac{1}{6}
\end{aligned}
$$

(e) $\lim _{x \rightarrow 0} \frac{\sin (3 x)}{x^{4}+x}$

Solution:

$$
\lim _{x \rightarrow 0} \frac{\sin (3 x)}{x^{4}+x}=\lim _{x \rightarrow 0} \frac{\sin (3 x)}{3 x} \frac{3 x}{x^{4}+x}=\lim _{x \rightarrow 0} \frac{\sin (3 x)}{3 x} \lim _{x \rightarrow 0} \frac{3}{x^{3}+1}=1 \times 3=3 .
$$

3. (a) (8 points) Complete the following table by putting a tick (check mark) \checkmark or a cross \times in each empty box to indicate whether each function is: even; odd; increasing; decreasing.

Function	even	odd	increasing	decreasing
$4 \sin x$	\times	\checkmark	\times	\times
7	\checkmark	\times	\times	\times
$x+\lfloor x\rfloor$	\times	\times	\checkmark	\times
$\|2 x+1\|$	\times	\times	\times	\times

(b) (2 points) If f is an increasing function and g is a decreasing function, does the composition $f \circ g$ have to be increasing or decreasing? Justify your answer.

Solution: For any numbers x_{1} and x_{2} with $x_{1}>x_{2}$, we have $g\left(x_{1}\right)<g\left(x_{2}\right)$ because g is decreasing, and then $f\left(g\left(x_{1}\right)\right)<f\left(g\left(x_{2}\right)\right)$ because f is increasing. So $f \circ g$ is decreasing.
4. (6 points) Use the Intermediate Value Theorem to show that the equation

$$
\cos x=x
$$

has a solution between 0.7 and 0.8 .

Solution: The equation can be re-arranged to $f(x)=\cos x-x=0$. Now

$$
f(0.7)=\cos (0.7)-0.7=0.065 \ldots \quad \text { and } \quad f(0.8)=\cos (0.8)-0.8=-0.103 \ldots
$$

Since f is a continuous function, and 0 lies between -0.103 and 0.065 , the Intermediate Value Theorem implies that there is some $c \in[0.7,0.8]$ satisfying $f(c)=0$, that is, $\cos c=c$.
5. (a) (5 points) Consider the function f defined as follows.

$$
f(x)= \begin{cases}\lfloor x\rfloor+1 & \text { if } x<2 \\ x^{2}-x & \text { if } x \geq 2\end{cases}
$$

Is the function $f(x)$ continuous at $x=2$? Justify your answer.
Solution: If x is slightly smaller than 2 , then we have

$$
f(x)=\lfloor x\rfloor+1=1+1=2 .
$$

Therefore $\lim _{x \rightarrow 2^{-}} f(x)=2$. On the other hand,

$$
\lim _{x \rightarrow 2^{+}} f(x)=\lim _{x \rightarrow 2^{+}}\left(x^{2}-x\right)=2
$$

because $x^{2}-x$ is continuous. So we have

$$
\lim _{x \rightarrow 2^{-}} f(x)=\lim _{x \rightarrow 2^{+}} f(x)=f(2)=2
$$

and therefore the function is continuous at $x=2$.
(b) (4 points) Suppose that f and g are continuous functions with $f(2)=5$ and

$$
\lim _{x \rightarrow 2}(4 f(x)-g(x))=11
$$

Find $g(2)$, and justify your answer.
Solution: Because f and g are continuous, we have

$$
\lim _{x \rightarrow 2} f(x)=f(2)=5 \quad \text { and } \quad \lim _{x \rightarrow 2} g(x)=g(2)
$$

The limit laws give

$$
\lim _{x \rightarrow 2}(4 f(x)-g(x))=4 \lim _{x \rightarrow 2} f(x)-\lim _{x \rightarrow 2} g(x)=20-\lim _{x \rightarrow 2} g(x) .
$$

So $20-\lim _{x \rightarrow 2} g(x)=11$, and therefore $\lim _{x \rightarrow 2} g(x)=9$.
6. (14 points) Indicate whether each of the following statements is true or false. You receive two points for each correct answer.
$\mathbf{T} \quad \mathbf{F} \quad$ The line $y=3$ is a horizontal asymptote to the graph $y=\frac{6 x^{2}-x^{4}-5}{2 x^{4}+3}$.
$\mathbf{T} \quad \mathbf{F} \quad$ The function $f(x)=\lfloor|x-2|\rfloor$ is continuous at $x=2$.
$\mathbf{T} \quad \mathbf{F}$ The function $f(x)=\sin (x-\pi / 2)$ is an even function.
$\mathbf{T} \quad \mathbf{F} \quad$ If $f(3)=5$ and $g(5)=2$, then $(f \circ g)(3)=2$.

T F If f is a function satisfying $|f(x)| \leq 2$ for all x, then

$$
\lim _{x \rightarrow \infty} \frac{f(x)}{x}=0
$$

T $\quad \mathbf{F}$ The formula

$$
\sin (3 \theta)=\sin ^{3} \theta-3 \sin \theta \cos ^{2} \theta
$$

is true for all θ.

T $\quad \mathbf{F} \quad$ The domain of the function $f(x)=\sqrt{\cos x}$ is $[-\pi / 2, \pi / 2]$.

