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1. (20 points) For each of the following functions, find
dy

dx
. You may use any differen-

tiation rules you like, without justification.

(a) y = 4x3 + 7x− 2

(b) y = (x2 + sin(3x))3

(c) y = (5x2 + 3) tanx

(d) y =
x2 − 2

x2 − 3
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2. Consider the function f(x) = (x + 5)2(x− 4)1/3.

(a) (6 points) Show that f ′(x) =
(x + 5)(7x− 19)

3(x− 4)2/3
.

(b) (2 points) Find f ′(5).

(c) (6 points) What values of x are the critical points of f?

3. (10 points) Starting from the definition of the derivative as a limit, show that the
derivative of the function f(x) = cos x is f ′(x) = − sinx. (You may assume that
limθ→0

sin θ
θ

= 1 and that limθ→0
cos θ−1

θ
= 0.)
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4. The picture below shows the graph of a function f(x) on an interval, with various
x-values labelled as a, b, c, d, e, g. This question asks you to deduce various properties
of the function f by looking at its graph.

a b c d e g

y = f(x)

0

x

y

(a) (8 points) Complete the following table by putting tick (check) marks X to
indicate whether each x-value a, b, 0, c, d, e, g corresponds to: a relative (local)
minimum or maximum of f ; an absolute (global) minimum or maximum of f ;
an inflection point of the graph. (You are allowed to mark more than one box
for each x-value, if you think you should.)

x-value a b 0 c d e g

Local minimum

Local maximum

Absolute minimum

Absolute maximum

Inflection point

(b) (6 points) Complete the following table to indicate whether the function is in-
creasing or decreasing, and concave-up or concave down, on each of the given
intervals. (If you prefer, you may use symbols, such as ↗ and ↘ for increasing
and decreasing, or ^ and _ for concave-up and concave-down.)

Interval (a, b) (b, 0) (0, c) (c, d) (d, e) (e, g)

Increasing or
decreasing

Concave-up or
concave-down
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5. (15 points) Find the absolute minima and maxima of the function f(x) = x3 − 12x
on the interval [−3, 5]. (You should find both the x-value of each absolute minimum
or maximum and the value of f(x) there.)

6. (15 points) Let C be the curve defined by the equation y2 − y = x3 + x2. Find the
equation of the normal line to C at the point (1,−1).
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7. (12 points) Indicate whether each of the following statements is true or false. You
do not need to show your working, and there is no penalty for wrong answers.

T F If f(x) is a function which satisfies the conditions of Rolle’s Theorem
on the interval [a, b], then there is at least one value c ∈ [a, b] where
the tangent to the graph of f at x = c is parallel to the x-axis.

T F The slope of the graph of f(x) = cos(5x) is never greater than 1.

T F The Mean Value Theorem is a special case of Rolle’s Theorem.

T F If a function’s derivative is zero on an interval, then the function is
constant on that interval.
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