MATH101 mid-term quiz 2

Saturday 3 December 2011
Name: \qquad ID: \qquad
$\begin{array}{lllllllllll}\text { Section: Khachadourian } & 5 & 6 & 7 & 8 & \text { Bright } & 9 & 10 & 11\end{array}$

Question:	1	2	3	4	5	6	7	Total
Points:	20	14	10	14	15	15	12	100
Score:								

1. (20 points) For each of the following functions, find $\frac{\mathrm{d} y}{\mathrm{~d} x}$. You may use any differentiation rules you like, without justification.
(a) $y=4 x^{3}+7 x-2$
(b) $y=\left(x^{2}+\sin (3 x)\right)^{3}$
(c) $y=\left(5 x^{2}+3\right) \tan x$
(d) $y=\frac{x^{2}-2}{x^{2}-3}$
2. Consider the function $f(x)=(x+5)^{2}(x-4)^{1 / 3}$.
(a) $(6$ points $)$ Show that $f^{\prime}(x)=\frac{(x+5)(7 x-19)}{3(x-4)^{2 / 3}}$.
(b) (2 points) Find $f^{\prime}(5)$.
(c) (6 points) What values of x are the critical points of f ?
3. (10 points) Starting from the definition of the derivative as a limit, show that the derivative of the function $f(x)=\cos x$ is $f^{\prime}(x)=-\sin x$. (You may assume that $\lim _{\theta \rightarrow 0} \frac{\sin \theta}{\theta}=1$ and that $\lim _{\theta \rightarrow 0} \frac{\cos \theta-1}{\theta}=0$.)
4. The picture below shows the graph of a function $f(x)$ on an interval, with various x-values labelled as a, b, c, d, e, g. This question asks you to deduce various properties of the function f by looking at its graph.

(a) (8 points) Complete the following table by putting tick (check) marks \checkmark to indicate whether each x-value $a, b, 0, c, d, e, g$ corresponds to: a relative (local) minimum or maximum of f; an absolute (global) minimum or maximum of f; an inflection point of the graph. (You are allowed to mark more than one box for each x-value, if you think you should.)

x-value	a	b	0	c	d	e	g
Local minimum							
Local maximum							
Absolute minimum							
Absolute maximum							
Inflection point							

(b) (6 points) Complete the following table to indicate whether the function is increasing or decreasing, and concave-up or concave down, on each of the given intervals. (If you prefer, you may use symbols, such as \nearrow and \searrow for increasing and decreasing, or \smile and \frown for concave-up and concave-down.)

Interval	(a, b)	$(b, 0)$	$(0, c)$	(c, d)	(d, e)	(e, g)
Increasing or decreasing						
Concave-up or concave-down						

5. (15 points) Find the absolute minima and maxima of the function $f(x)=x^{3}-12 x$ on the interval $[-3,5]$. (You should find both the x-value of each absolute minimum or maximum and the value of $f(x)$ there.)
6. (15 points) Let C be the curve defined by the equation $y^{2}-y=x^{3}+x^{2}$. Find the equation of the normal line to C at the point $(1,-1)$.
7. (12 points) Indicate whether each of the following statements is true or false. You do not need to show your working, and there is no penalty for wrong answers.
$\mathbf{T} \quad \mathbf{F} \quad$ If $f(x)$ is a function which satisfies the conditions of Rolle's Theorem on the interval $[a, b]$, then there is at least one value $c \in[a, b]$ where the tangent to the graph of f at $x=c$ is parallel to the x-axis.

T F The slope of the graph of $f(x)=\cos (5 x)$ is never greater than 1.

T F The Mean Value Theorem is a special case of Rolle's Theorem.

T \mathbf{F} If a function's derivative is zero on an interval, then the function is constant on that interval.

