

Time: 2 Hours January 31, 2002 Prof. H. Abu-Khuzam

TOTAL

MATHEMATICS 101 FALL 2001-2002 FINAL EXAMINATION

Name	
ID#	***************************************

Circle your section number below:

#5 (1:00 Th). #6 (2:00 Th)

#7 (3:00 Th) #8 (4:00 Th)

PROBLI	EM	GRADE	
PART I	1	/ 7	
	2	/ 7	. No.
	3	/ 7	AMERICAN UNIVERSITA LIBRARY OF BEIRUT
	4	/ 7	
	5	/ 10	
	6	/ 6	
	7	/ 8	
PART II	8-19) / 48	

-----/100

AMERICAN UNIVERSITY
LIBRARY
OF BEIRUT

PART I. Solve each of the following problems (Problems 1, 2, 3, 4, 5, 6, and 7) in the space provided for each problem.

1. Let
$$y = \int_{2}^{x^{4}} t^{5} \sqrt{t+3} dt$$
 . Find

[7 points]

2. Find the area of the region bounded by the curves $x = y^2$ and x = y+2.

[7 points]

3. Let
$$f(x) = \begin{cases} 3x^3, & \text{if } x \le 2 \\ ax^2 + b, & \text{if } x > 2 \end{cases}$$

Find the values of a and b such that f is differentiable at $x=2$. Explain.

[7 points]

4. Find the sides of a rectangle with perimeter 100 cm whose area is as large as possible.

[7 points]

5. Find any asymptotes, any maxima or minima , and sketch the graph for $f(x) = \frac{-4}{x^2 + 2}$

$$f(x) = \frac{-4}{x^2 + 2}$$

[10 points]

6. Find $\lim_{x\to 0} 2x^2 \sin(\frac{1}{x})$ (Show your work)

[6 points]

7. Find the volume of the solid generated by revolving the region bounded by the graphs of $y = x^2$ and y = x about the y-axis. [you can use cylindrical shells or washer(Disk) method].

[8 points]

PART II. Circle the correct answer in each of the following questions (problem 8 to problem 19) [4 points for each correct answer, 0 for no answer, and -1/2 for each wrong answer]:

$$8. \int_{0}^{1} \frac{1}{(2x-1)^2} dx$$

- a. 1b. 1/2
- c. 1
- d. ()
- e. none of the above.

[4 points]

9. If
$$x^3 - 3xy^2 + y^3 = 3$$
, then y' at the point (2,1) is equal to:

- a. 1
- b. -1
- c. 0
- d. 1/2
- e. none of the above

[4 points]

10.
$$\int_{0}^{1} (1 + \sqrt{x})^{2} dx =$$

- a. 7/2
- b. 10/3
- c. 17/6
- d. 3
- e, none of the above.

[4 points]

11.
$$\lim_{x \to 0^+} \frac{|x|(2x^2 + 4)}{5x}$$
 is equal to:

- a. 2/5b. -4/5
- d. 2/5
- e. does not exist.

[4 points]

12. Let $f(x) = x^4-2x^2$, then (using the second derivative test):

- a. f(x) has a local maximum at x = -1.
- b. f(x) has a local maximum at x=1.
- f(x) has a local minimum at x = 0.
- d. f(x) has a local maximum at x=0.
- e. none of the above

[4 points].

$$13. \int_0^{\pi/4} \frac{\sec^2 x \, dx}{\sqrt{\tan x}}$$

- a. $\sqrt{2}$
- b. $3\sqrt{2}$
- c. 3/2
- d. 2
- e. none of the above.

[4 points]

- 14. If f is continuous on an interval [a,b] and $c \in (a,b)$, then which one of the following statements is <u>TRUE</u>?
 - a. If f'(c) = 0, then f has a local maximum or a local minimum at x = c.
 - b. If f has a local minimum at x = c, then f'(c) = 0
 - c. If f'(c) = 0, and f''(c) < 0, then f has a local minimum at x = c.
 - d. If f''(c) = 0, then f has a point of inflection at x = c.
 - e. none of the above.

[4 points].

- 15. If $\int_{0}^{x} f(t) dt = \sin 2x$. then f(x) =
 - a. 2 cos 2x
 - b. 2sin 2x
 - e. -(1/2)cos 2x
 - d. cos 2x
 - e none of the above.

[4 points]

16. The length of the curve

$$y = \frac{4\sqrt{2}}{3}x^{3/2} - 1$$
 for $0 \le x \le 1$

- a. 13/6
- b $\sqrt{2}$
- c. 5/6
- d. 4/3
- e. none of the above.

[4 points].

17. If $f(x) = (5x+1)^{100}$, then $\lim_{h \to 0} \frac{f(h)-1}{h}$ is equal to:

- a. 100
- b. ()
- c. 5
- d. 500
- e. does not exist.

[4 points]

18. The equation $x^3 +7x +1=0$ has

- a. no solution in the interval [-2,2]
- b. exactly three solutions in the interval [-2,2]
- c exactly two solutions in the interval [-2,2]
- d exactly one solution in the interval [-2,2]
- e none of the above

[4 points].

19. The value of the constant k that will make the function

$$f(x) = \begin{cases} x^2 + 12, & \text{if } x \le 2 \\ -kx^3, & \text{if } x > 2 \end{cases},$$

continuous, is

- a. -2
- b. -3
- c. -5/8
- d. ()
- e. none of the above.

[4 points]