25/01/03

Time: 2 hours

MATH 101 FINAL EXAM First Semester 02-03 INSTRUCTIONS

- 1. Answer questions on the <u>WHITE</u> question sheet in the spaces provided. Use the back of the sheet if you need more space. Put an arrow to indicate that there is more writing on the back.
- 2. Use the BLUE sheet for scratch only.
- 3. Write your <u>Name</u> and <u>Section Number</u> on <u>both</u> the white and blue sheets. On the <u>white</u> sheet, please write them <u>clearly</u> on <u>top of the page</u>. You will lose grades if you don't.

 <u>Section numbers</u>, according to problem-solving sessions, are as follows:

Section 5: Thursday, 1:00 p.m. Section 6: Tuesday, 11:00 a.m. Section 7: Thursday, 4:00 p.m. Section 8: Thursday, 9:00 a.m.

- 4. All work towards solutions must be shown on white sheet. Writing an answer by itself will not be given credit.
- 5. You may only ask questions that have to do with reading the text correctly.
- 6. Cheating will not be tolerated.

Time: 2 hours

25/01/03

MATH 101 First Semester, 02-03 FINAL EXAM

1.Use implicit differentiation to find the slope of the tangent line to the curve $2x^3 + 2y^3 - 9xy = 0$ at the point (2,1).

2. Find each limit. Show your work.

a)
$$\lim_{x\to 0} \frac{\tan 2x}{5x}$$

b)
$$\lim_{y \to -3} \frac{1}{y^2 - 9}$$

b) What value should be assigned to f(1) to make the extended function continuous at x = 1? Give a reason for your answer.

4. a) Evaluate the integral $\int (8t^3 - 3t^2 + \frac{1}{t^2})dt$. (12%)

b) Solve the initial value problem:

$$\frac{dy}{dt} = 8t^3 - 3t^2 + \frac{1}{t^2}$$
, and y = 8 for t = 1.

(18%)

5. Evaluate each integral. Show your work.

a)
$$\int_{0}^{\pi} \frac{\sec^2 z dz}{(1+2\tan z)^3}$$

AMERICA CYPE

b) $\int_{1}^{\frac{\pi}{12}} \cos^2 3x dx$

6. a) Graph the function $g(x) = 3x - x^2$.

(16%)

b) Integrate the function g(x) over the integral $\begin{bmatrix} 0,4 \end{bmatrix}$.

c) Find the area of the region between the curve $y = 3x - x^2$ and the x-axis on the interval [0,4].

7. Find the area of the region enclosed between the curve $y = 1 - x^2$ and the line y = -3. Draw a sketch of the line and the parabola and shade the required region. (10%)

8. a) State the Mean Value Theorem.

(10%)

b) Apply the Mean Value Theorem to the function $f(x) = x^3$, on the interval [0,2]. Find the coordinates (c, f(c)) of the point whose existence is assured by the Mean Value theorem.

