AMERICAN UNIVERSITY OF BEIRUT
FINAL EXAM-MATH 101
Jan.,2008
INSTRUCTOR: Z. KHACHADOURIAN
NAME:...
SECTION: 4 5 6

Ques.	1	2	3	4	5	6	7	8	9	10	Exam Gr.
Pts.											

1. Solve the two independent parts: (4+4=8points)
a) Let $I=\int_{3}^{5} \sqrt{1+8 \cos ^{2} x} d x$.

Without attempting to integrate, show that the value of the above integral lies between 2 and 6. Hint: Use the Min-Max inequality.
b) Find the average value of the function $y=\sin 2 x$, over the interval $\left[0, \frac{\pi}{4}\right]$.
2. $(\mathbf{4}+\mathbf{4}+\mathbf{4}=\mathbf{1 2}$ points)Consider the region in the first quadrant limited by the y-axis and the curves : $y=x^{2}$ and $y=4$. Answer the following three questions:
a) Draw the region and find its area.
b) Find the volume of the solid generated when the region is revolved about the x -axis. (Drawing is not a must)
c) The cross sections of a solid perpendicular to the y -axis are equilateral triangles with a base running from the y-axis to the curve $y=x^{2}$. Find the volume of this solid. (Drawing is not a must).
3. $\mathbf{(4 + 4 + 4 = 1 2 p o i n t s)}$ Evaluate the integrals: a) $I=\int_{0}^{1} x^{4}\left(1+8 x^{5}\right)^{-\frac{1}{2}} d x$
b) $J=\int_{0}^{\frac{\pi}{5}} \sin ^{2}(5 x) d x$
c) $K=\int_{-2}^{3}|x| d x$
4. $(\mathbf{3}+\mathbf{3}+\mathbf{3}+\mathbf{3}=\mathbf{1 2} \mathbf{p o i n t s})$ Find $\frac{d y}{d x}$ in the following :
a) $y=\int_{x}^{1} \frac{6}{3+t^{4}} d t$
b) $y=u^{2}-4 u+3 ; u=\tan (x)$; at $x=\frac{\pi}{4}$.
c) $y=\sqrt{1+\sec (4 x)}$
d) $x y^{2}+2 x-3 y=5$

5. (6points)

Express the limit :
$\lim _{\|P\| \rightarrow 0} \sum_{k=1}^{k=n}\left(c_{k}^{3}-5 c_{k}\right) \Delta x_{k}$, as a definite int egral, where P is a partition of $[-3,4]$.
6. $\left(3+3+3+3=12\right.$ points) a) Solve the inequality: $\left|2-\frac{x}{3}\right|>\frac{5}{3}$.
b) Given the function: $y=x-\frac{1}{2 x}$. Find the points on the curve where the tangent is parallel to the line $y=9 x$.
c) For what values of a and b will $f(x)=\left\{\begin{array}{c}a x ; x>2 \\ a x^{2}-b x+3 ; x \geq 2\end{array}\right.$ be differentiable for all values of x.
d) Find an equation of the normal line to the curve whose parametric equation is:

$$
x=1+\frac{1}{t^{2}} ; y=1-\frac{3}{t} \quad \text { at } t=2 .
$$

7. (6points) Find y as a function of x if $\frac{d y}{d x}=-\pi \sin (\pi x)$ and $y(0)=0$.
8. (4+4+4=12points)Given the function : $y=f(x)=x \sqrt{3-x}$
a) What is the domain? Find the value(s) of x for which the derivative is zero.
b) For what values of x is the function i) increasing?
ii)decreasing?
c) Sketch the graph of the function. Show important steps.
9. $\mathbf{(4 + 4 + 4}=\mathbf{1 2}$ points)Evaluate the limits:
a) $\lim _{x \rightarrow \infty} \frac{3 x}{2 x+5 \sqrt{x}}$
b) $\lim _{x \rightarrow 5^{+}} \frac{8-\lceil x\rceil}{\cos \left(\frac{\pi x}{5}\right)}$
c) $\lim _{x \rightarrow 0} \frac{\sec x-1}{x^{2}}$
10. Solve the two independent parts: $(\mathbf{4}+\mathbf{4}=\mathbf{8 p o i n t s})$
a) Assume that f is an even function and g is an odd function.

Let $\int_{0}^{2} f(x) d x=a \quad, \quad \int_{2}^{5} g(x) d x=b, \int_{2}^{5} f(x) d x=c$
Find $\int_{-2}^{5}(3 f(x)-7 g(x)) d x$ in terms of a, b, and $c . \quad$ (Explain).
b) (Independent part) Evaluate: $\lim _{n \rightarrow \infty} \frac{(1+2+3+\ldots . .+n)}{n^{2}}$

