

American University of Beirut Math 101 Dr. H. Yamani Final Exam Spring 2004 Name:

Do all of the following problems. Show all your work. No work shown. No credit.

****GOOD LUCK****

1. Use the definition of limit to prove that $\lim_{x\to 2} (4x-2) = 6$

2. Find equations for the lines that are tangent to the given curve at the given point.

$$x^3y^3 + y^2 = 4x + y$$
 at (2,1)

3. Use the Mean Value theorem for $f(x) = x^2 + 1$ on any interval [a, b] to prove that there exists a value "c" such that $c = \frac{a+b}{2}$

5. The recursion formula for Newton's method is given by

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

Given $f(x) = x^2 - 2$, $x_0 = 1$. Calculate successive terms x_1, x_2, x_3 . What number is being approximated.

6. Evaluate the integral:

$$\int_{0}^{\pi/4} \frac{\sec^2 x}{(1+7\tan x)^{2/3}} dx$$

8. Use the washer method to find the volume of the solid generated by revolving the region bounded by $y = x^2$ and y = 2x about the y - axis.

9. Use the shell method to find the volume of the solid generated by revolving the region bounded by $y = 2x - x^2$ and the x - axis about the line x = -1.

10. Find the area of the region bounded between the curve $f(x) = x^2 + 2x$ and g(x) = -x + 4 in the interval [-4, 2].

11. Find the length of the curve $y = \int_{-2}^{x} \sqrt{3t^4 - 1} dt$ on $-2 \le x \le -1$.