Time: 60 minutes

MATH 101 Sections 5, 6, 7, 8 Quiz I First Semester, 02-03 26/11/02

Instruction: Show your work in all the problems.

- 1. Given $f(x) = \sqrt{x}$, $g(x) = \sqrt{1-x}$. Find g(f(x)) and find its domain and range.
- 2. (a) Find the points of discontinuity for the function f(x), whose graph is given below. For each such point, explain why the function is discontinuous there.
 - (b) If possible, remove one discontinuity by assigning a different value for the

3. Use reference triangles to find each of the following:

(a)
$$\csc^{-1}(-2)$$

(c)
$$\tan (\sin^{-1} x)$$
, $x > 0$

$$4. \ \mathbf{f}(\mathbf{x}) = \begin{cases} \frac{x}{|\mathbf{x}|}, & \mathbf{x} \neq 0 \\ 0, & \mathbf{x} = 0 \end{cases}$$

- (a) Find $\lim_{x\to 0^+} f(x)$ and $\lim_{x\to 0^-} f(x)$. Does $\lim_{x\to 0} f(x)$ exist? Explain. (b) Is f(x) continuous at 0? Justify your answer.

5. Find
$$\lim_{x\to 2} \frac{\sqrt{x+2}-2}{x-2}$$

- 6. Given $g(x) = \frac{2x-5}{x^2-4}$.
 - (a) Find horizontal and vertical asymptotes of the graph of g(x) from the function rule. Do not draw the graph.

(b) Find
$$\lim_{x\to 2^+} \frac{2x-5}{x^2-4}$$
. Show your work.

7. Given the function $f(x) = -2x^2$. Find the slope m of the curve of f(x) at x = 3. (Use the limit definition of m)

