
EM 311M - Dynamics

Exam 1 - Solutions

February 15, 2012

Write your solutions only on the FRONT side of the sheets provided. Show all your work.

1. In practice, a quarterback throws the football with a velocity v0 at a given angle θ0 above
the horizontal. At the same instant, a receiver standing at a given distance xr0 in front of
him starts running straight down field with a given constant velocity vr and catches the ball.
Assume that the ball is thrown and caught at the same height above the ground.

i. Find the expression for the initial velocity v0 as a function of the given data and g?
(30 points)
Note: It is OK to express the final result as two possible solutions.

ii. Explain why do you get two possible solutions and which one represent the physical
solution of the problem. (5 points)
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Solution:
i)
(5 points) Motion of ball: (5 points) Motion of receiver:

xb = v0 cos(θ0)t xr = xr0 + vrt

yb = v0 sin(θ0)t−
g

2
t2 yr = 0

(10 points) At some time t, the ball and the receiver must meet each other:

(1) xb = xr ⇒ v0 cos(θ0)t = xr0 + vrt

(2) yb = yr ⇒ v0 sin(θ0)t−
g

2
t2 = 0

From (2), we obtain the time when the ball is caught:

v0 sin(θ0)t−
g

2
t2 = 0⇒ t

(
v0 sin(θ0)−

g

2
t
)

= 0.

1



The values of t here represent the times when the ball is at the same height as when it was
thrown. The value t = 0, represents the initial time when the ball is thrown. The second
value

t =
2

g
v0 sin(θ0)

is the time when the ball is caught.

(10 points) We substitute the expression of the time in (1) to get

v0 cos(θ0)

(
2

g
v0 sin(θ0)

)
= xr0 + vr

(
2

g
v0 sin(θ0)

)
.

Reordering the terms we get

2 sin(θ0) cos(θ0) v
2
0 − 2vr sin(θ0)v0 − g xr0 = 0.

This is a quadratic equation for v0 of the form

a v20 + bv0 + c = 0

with coefficients: a = 2 sin(θ0) cos(θ0), b = −2vr sin(θ0) and c = −g xr0 . Using the formula
for the solution of the quadratic equation:

v0 =
−b±

√
b2 − 4 a c

2a
,

we obtain

v0 =
2vr sin(θ0)±

√
(2vr sin(θ0))2 + 4 · 2 sin(θ0) cos(θ0) g xr0

2 · 2 sin(θ0) cos(θ0)
,

and by reordering the expression we get the result

v0 =
vr sin(θ0)±

√
v2r sin

2(θ0)+g xr0 sin(2θ0)

sin(2θ0)
,

where we used the identity sin(2θ0) = 2 sin(θ0) cos(θ0).

ii)
(2 points) Mathematically, we obtain two possible solution: one using the “+” sign in the
result and the other using the “−” sign. Since for 0 ≤ θ ≤ 90o, we get sin(2θ) ≥ 0, we have
that √

v2r sin2(θ0) + g xr0 sin(2θ0) > vr sin(θ0)

assuming g > 0 and xr0 > 0. Then, we will get one positive solution for v0 and one negative
solution for v0.
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The question is what is the meaning of those two solutions. In order to understand what the
two mathematical solutions may mean, we can think of two different scenarios as follows:

- Scenario I: At t = 0 the football is at x = 0 with a velocity v0 > 0 and angle θ0 above the
horizontal and, at the same instant, a receiver at a distance xr0 has a constant velocity
vr. The ball meets the receiver at some time t > 0. (see Figure 1)

- Scenario II: A virtual meeting between the ball and the receiver happened at some past
time t < 0. The ball has a path in which later, once the receiver is at the position xr0
at t = 0, it reaches the quarterback with a velocity having v0 < 0. (see Figure 1)
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Scenario I : Meeting at t > 0
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Scenario II : Meeting at t < 0

Figure 1: Two different scenarios for which at t = 0 the football is at x = 0 with a velocity v0
with angle θ0 with respect to the horizontal and at the same time a receiver at a distance xr0 has
a constant velocity vr.

(3 points) The physical solution of the problem is given by the scenario I, for which v0 >
0, since the problem indicates that the receiver catches the ball after it is thrown by the
quarterback, at some time t > 0.
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2. i. Derive the formulas for the acceleration vector components ar and aθ in the polar coor-
dinate system. Express the results using the angular velocity ω and the angular accel-
eration α. (15 points)

ii. An object P of mass m moves along the spiral path r = 2θ ft, where θ is in radians.
Its angular position is given as a function of time by θ = ω0t rad, with ω0 the object’s
constant angular velocity.

a) Determine the expression of the polar components of the total force acting on the ob-
ject, and express the results only as a function of m, ω0, and t, with the appropriate
units. (15 points)

b) Find the expression of the ratio of the magnitude of the total force to its transverse
component only as a function of ω0, for t = 2 s ? (5 points)
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Solution:
i)
(3 points) In polar coordinates

~r = rêr.

(5 points) The velocity vector is calculated as

~v =
d~r

dt
=
dr

dt
êr + r

dêr
dt

=
dr

dt
êr + rωêθ,

where we use the product rule for derivatives. Furthermore, the unit vectors in polar
coordinates, êr and êθ, satisfy

dêr
dt

= ωêθ ;
dêθ
dt

= −ωêr.

(5 points) Similarly, we compute the acceleration as

~a =
d~v

dt
=
d2r

dt2
êr +

dr

dt

dêr
dt

+
dr

dt
ωêθ + r

dω

dt
êθ + rω

dêθ
dt

=
d2r

dt2
êr +

dr

dt
ωêθ +

dr

dt
ωêθ + r

dω

dt
êθ + rω(−ωêr)

=

(
d2r

dt2
− rω2

)
êr +

(
rα+ 2

dr

dt
ω

)
êθ,

where ω = dθ
dt and α = dω

dt = d2θ
dt2

.
(2 points) The polar components of the acceleration vector are:

ar = d2r
dt2
− rω2 ; aθ = rα+ 2drdtω
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ii a)
(5 points) Given r = 2θ ft and θ = ω0t rad with ω0 constant, we calculate:

ω =
dθ

dt
= ω0 rad/s ;

dr

dt
= 2

dθ

dt
= 2ω0 ft/s,

α =
dω

dt
= 0 rad/s2 ;

d2r

dt2
= 0 ft/s2.

(5 points) Using the expressions for ar and aθ above, we get

ar =
�
�
�d2r

dt2
− rω2 = −rω2

0 = −(2θ)ω2
0 = −(2ω0t)ω

2
0 = −2ω3

0t ft/s2,

aθ = r�α+ 2
dr

dt
ω = 2(2ω0)ω0 = 4ω2

0 ft/s2.

(5 points) By Newton’s 2nd law
~F = m~a.

In the polar coordinate system:

~F = Frêr + Fθêθ = m(arêr + aθêθ).

The polar components of the total force are:

Fr = mar = −2mω3
0t slug ft/s2

Fθ = maθ = 4mω2
0 slug ft/s2

Fr = −2mω3
0t lb ; Fθ = 4mω2

0 lb

ii b)
(2 points) The ratio of the magnitude of the total force to its transverse component is

||~F ||
Fθ

=

√
F 2
r + F 2

θ

Fθ
=

√(
Fr
Fθ

)2

+ 1.

(2 points)Using the expressions from above

||~F ||
Fθ

=

√(
−2mω3

0t

4mω2
0

)2

+ 1 =

√(
ω0t

2

)2

+ 1.

(1 points) For t = 2 s, we obtain

||~F ||
Fθ

=
√
ω2
0 + 1 .
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3. An airplane of weight W makes a turn at constant altitude and at constant velocity v. The
bank angle is α. Find the expression for the radius of curvature ρ of the plane’s path as a
function only of v, g, and α. (30 points)

3. An airplane of weight W makes a turn at constant altitude and at constant velocity v ft/s.
The bank angle is α. Find the expression for the radius of curvature of the plane’s path as a
function only of v, g, and α.
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Solution:
In order to analyze this problem we need to realize that, since the airplane travels at a
constant altitude, its path occurs on a horizontal plane. We then choose standard normal
and tangential unit vectors: ên and êt, on the plane, and since the lift and weight forces has
a component perpendicular to the plane, we use an additional unit vector, êz, in the vertical
direction; see the illustration below:
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Note: the forces acting on the airplane are

~L = L sin(α)ên + L cos(α)êz
~W = −mgêz

There is no force acting on the tangential direction.

(10 points) By Newton’s 2nd law in the z-direction

ΣFz = L cos(α)−W = maz = 0.
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Then, we obtain

(1) L =
W

cos(α)
.

(5 points) We know that the velocity ~v = vêt, then the acceleration

~a =
d~v

dt
=
dv

dt
êt + v

dêt
dt

=
dv

dt
êt + vω ên,

where dêt
dt = ωên. Furthermore, v = ρω with ρ the radius of curvature, and since v is constant

dv
dt = 0. Then,

~a =
v2

ρ
ên.

(7 points) By Newton’s 2nd law in the normal direction

(2) ΣFn = L sin(α) = man = m
v2

ρ
.

(8 points) Using equation (1) into (2), we obtain

L sin(α) = m
v2

ρ
⇒ W

cos(α)
sin(α) = m

v2

ρ

and by replacing W by mg, we get

��mg

cos(α)
sin(α) =��m

v2

ρ

giving the result

ρ = v2

g tanα .
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