
Data Structures and Algorithms: Quiz No. 1 
 

Solutions 
 
 
 
 
1. Suppose we have the following linked list. 
 

33 44 55 
fence 
22 11 88 77 66 

 
 
 
To make the fence point to the node whose element’s value is 77, it would take these 
many steps (step=moving the fence from one node to another or assigning it to another 
pointer). 
 
The fence must be first assigned to the head node (1 Step) 
Then the fence must be advanced to the node with value 33, then 44, then 55, then 66, 
then 77 (5 steps) 
Therefore, the total number of steps is 6 
 
2. The constructor of a singly linked list node takes a reference of the node’s value and a 
pointer to the next node as parameters (in this order). The following C++ statement(s) 
is(are) part of few statements that insert a node in a singly linked list. 
 
Answer d) is the correct one. Remember, we never change the value of the fence pointer 
when we insert or remove. Hence, we exclude answers a) and c). Answer b) is wrong 
because, you never include the ‘&’ symbol after a variable’s name in a function call or 
any statement. It is only used in function prototypes and declarations to denote a 
reference. 
a) fence = new Link<Elem> (item, fence->next); 
b) fence->next = new Link<Elem> (item &, fence->next); 
c) fence = new Link<Elem> (item&, fence->next); 
d) fence->next = new Link<Elem> (item, fence->next); 
 
3. Suppose we have a pointer Orphan that points to a Link node that is not part of any list. 
The following C++ statement(s) insert this node in a singly linked list. 
 
Answers a), b), and c) are wrong because they modify the value of the fence pointer. 
Answer e) is wrong because the fence will be connected to the node on the right side of 
the new node. This leaves the new node Orphan not connected to any node on the left 
side. 
a) fence = fence->next;Orphan->next=fence->next; 
b) Orphan->next=fence->next; fence = fence->next;  
c) Orphan->next=fence->next; fence = Orphan; 
d) Orphan->next=fence->next; fence->next = Orphan; 

www.amal-aub.org



e) Orphan->next=fence->next; fence->next = Orphan->next; 
 
 
4. ADT 
a) Stands for templates 
b) Stands for abstract classes 
c) Stands for any data type 
d) Stands for the collection (namespace) of all data types 
e) All of the above 
An ADT stands for Abstract Data Type, which simply means any data type (answer c)) 
 
5. A linked list is most like a: 
a) sequence b) set  c) chain d) a and b e) a and c f) b and c 
In a linked list, order matters and hence, it is similar to a sequence and a chain. In a set, 
order is not important. Answer e) is the correct one. 
 
6. A linked list of 7 nodes, when compared to an array-based list with 7 elements and 
MaxSize of 10 elements, requires: 
a) More space  b) Less space  c) Same space 
d) Depends on the type of the elements, e.g., integers, double, etc. 
 
The element in a list node (array or linked) can be of any type (character is 2 bytes, 
integer 4 bytes, double is 8 bytes, a record may be a 100 or more bytes). The size of the 
pointer on the other hand, in a linked list is always of fixed size, for example, 8 bytes. 
Now let’s say we are storing characters in the nodes of the list and assuming a pointer 
occupies 8 bytes, then the linked list would occupy (7+1)×(2+8)=80 bytes (we added 1 to 
7 because of the head node). The array does not have pointers and has a MaxSize of 10 
and therefore it occupies 10×2=20 bytes, which is much less than what the linked list 
occupied. 
Now suppose, we are storing records in the nodes and each record occupies 150 bytes. 
Then the linked list would consume (7+1)×(150+8)=1264 bytes. The array version on the 
other hand will take 10×150=1500 bytes, which is in this case more than the linked list. 
Therefore answer d) is the right one. 
 
7. When a pointer requires 4 bytes and a data element requires 4 bytes, the singly-linked 
list implementation requires less space than the array-based list implementation when the 
array would be: 
a) less than 1/4 full b) less than 1/3 full c) less than 2/3 full 
d) less than 1/2 full e) less than 3/4 full f) never. 
 
If N is the number of nodes in a linked list and it is the number of filled nodes in the array 
list, then the size of the linked list is N×(4+4)=8N bytes. Now suppose the Array has a 
max size of M, then the size of the array is 4×M=4M. 
The linked list consumes less space when 8N<4M or N<½M. Therefore, answer d) is the 
right one. 
 

www.amal-aub.org



8. The following C++ statement(s) are part of the code that removes a node from a linked 
list. 
a) Link<Elem>* temp=fence->next; fence->next=fence->next->next; 
  if (tail==fence->next) tail=fence; delete temp; 
b) Link<Elem>* temp=fence->next; fence->next=fence->next->next; 
  if (tail==temp) tail=fence; delete temp; 
c) Link<Elem>* temp=fence->next; fence->next=temp->next; 
  if (tail==fence->next) tail=fence; delete temp;  
d) Link<Elem>* temp=fence->next; fence->next=fence->next->next; 
  if (tail==fence) tail=fence; delete temp; 
 
Answer d) is wrong because if tail was equal to fence, then there would have been 
nothing to the right of the fence to remove. 
Answers a) and c) are wrong because we’re checking against fence->next, which has 
changed on the previous line. Note that a) and c) are equivalent. 
Answer b) is the right one. 
 
9. Here is a series of C++ statements using the list member functions. 
L1.append(10);  L1.append(20);  L1.append(15); 
 
If these statements are applied to an empty list, the result will look like: 
a) <10 20 15> b) <10 20 15 |> c) <| 10 20 15>  
d) <15 20 10> e) <| 15 20 10> f) <15 20 10 |> 
 
The | symbol denotes the fence and initially, we have the following list: <| >. So when 
we append 10, 20, and then 15, they all go to the right side of the fence in the order in 
which they were appended. Hence, c) is the right answer. 
 
10. By comparing the array-based and linked implementations, the array-based 
implementation: 
a) has slower direct access to elements but faster insert/delete from the current position. 
b) has both faster direct access to elements and faster insert/delete from the current 
position. 
c) has faster direct access to elements but slower insert/delete from the current position. 
d) has both slower direct access to elements and slower insert/delete from the current 
position. 
 
Answer c) is the correct one. We can access any element within the array simply by using 
its index (e.g., A[11], retrieves the 12th element). When we insert into an array-list, we 
would have to shift all element on the right of the fence to the right. Inversely, when we 
delete, we have to shift elements to the right. Therefore, the insert and delete operations 
are slow when it comes to arrays. 
 
11. Suppose we have the list <15 4 | 20 55 10> and then execute the following C++ 
calls 
e=0;  L1.remove(e);  L1.append(e);  L1.prev();  
L1.insert(e); 

www.amal-aub.org



 
The result will be: 
a) <| 4 15 20 55 10 4> b) <15 | 4 20 55 10 20> c) <15 | 20 4 55 10 20> 
d) <15 4 | 20 55 10 20> e) <15 | 20 4 55 20 10> f) <15 | 0 4 55 10 0> 
 
The remove function returns to us the value to the right of the fence: <15 4 | 55 10>. 
append, then inserts this value (20) at the end of the list: <15 4 | 55 10 20>. prev 
moves the fence backward: <15 | 4 55 10 20> and insert inserts this same value (20) 
after the fence:  
<15 | 20 4 55 10 20>. It follows that c) is the right answer. 
 
12. For linked-lists (all operations apply directly to the right of the fence), a header node 
is used: 
a) Because there is no other way for the fence pointer to indicate the first element in the 
list. 
b) Because the insert and delete routines won't work correctly in all cases without it. 
c) a and b 
 
Answer b) is the right one because if there wasn’t this special node, there is no way to 
insert a node at the start of the list nor delete the first node. a) is not true because we can 
state that the current element is the one that the fence points to. Hence, if the fence is at 
the start of the list, we can say that the fence points to the first element.  
 
13. For a list of length n, the linked-list's prev function requires worst-case time (below, 
the symbol O denotes “in the order of”. Example: O (4) means processing 4 elements): 
a) O (1) b) O (n/4) c) O (n/2) d) O (n) e) O (2n) 
 
If the fence is at the tail of the list of length n, then to move to the node just before it, we 
have to move the fence to the head (one step) and then use next() n-1 times to move 
the fence to the desired node. Hence it takes 1 + (n-1)=n steps and therefore, answer c) is 
the correct one. 
 
14. Finding an element in an array-based list with a given key value requires worst case 
time: 
a) O (1) b) O (n/4) c) O (n/2) d) O (n) e) O (2n) 
 
If the desired value is at the end of the array and to find an element we have to search 
starting at the top, then we would search n elements to find our value. Answer d) is the 
correct 

www.amal-aub.org


