
Data Structures and Algorithms – Problems from a Previous Semester 
 

The midterm for the Spring 2003 semester will consist of about 5 or 6 smaller 
problems. The problems below are for your reference only. 

 
 
Problem 1 
The median is the middle element of an odd-sized array. If the array, on the other hand, 
has an even number of elements, the median is the average of the middle two elements. 
Suppose an approximation of this selects one of the two middle elements if the size of the 
array (or list) is even. Suppose the array has n elements. Implement a “median heap”, 
similar to the min and max-heap. The root node would be the median of the entire array. 
Its left child is the median of the array that excludes the element that was picked as the 
median (size of the array is n-1). The right child is the median of the array excluding the 
two medians that were identified (size of the array is n-2). This process continues until all 
the array elements are exhausted. Allow the user to enter an array of size 11, which you 
will use to build the median heap. Print the original array as well as the content of the 
heap in preorder traversal. 
 
Problem 2 
Implement an array of linked lists, which will be used to count the number of identical 
characters in a string (size of the array is the number of characters in the Alphabet). All 
identical characters would go into the same linked list. Provide an interface to allow the 
user to enter a string of up to 70 characters (use the cin.getline() function). A function, 
which will be used by your program, would traverse the each list to count the 
corresponding number of occurrences for each character and print it out. 
 
Problem 3 
Void bubsort(Elem A[], int n) 
{ 
   for (int I=0; I<n-1; I++) 
       for (int j=n-1; j>I; j--) 
           if (Comp::lt(A[j], A[j-1])) 
              swap(A, j, j-1); 
} 
The bubblesort algorithm, as defined above, can be improved to take less time in certain 
cases (if the data is sorted or partially sorted). Identify this improvement and make the 
change. Test your changed function against the old one using the array: 
A[]={5, 12, 0, 3, 6, 4, 8, 3, 2, 1, 7, 14, 15, 18, 20}; 
Display the number of passes and number of swaps in each case. 
 

www.amal-aub.org



Problem 4 
We want to sort the data so the maximum element is in the middle (size is odd) or near 
the middle (size is even). The next maximum element is to the left of the maximum and 
the next-next maximum is to the right of the maximum, and so on. For example, if A is 
the original array and B is the sorted array, then we have: 
A[]={5, 12, 0, 3, 6, 4, 8, 3, 2, 1, 7, 14, 15, 18, 20}; 
B[]={1, 2, 3, 4, 6, 8, 14, 18, 20, 15, 12, 7, 5, 3, 0}; 
Design what we will call MountainSort using any of the 9 sorting algorithms. Generate 
20 random values between 0 and 20 and store in an array. Sort this array using 
MountainSort and display the results. 
 
Problem 5 
Create 7 student records. Each record consists of first name (up to 16 characters), last 
name (up to 16 characters), ID (long int), rank (int – specifying 1st year, 2nd year, etc.), 
and major (up to 24 characters). Design the user interface, which allows the user to enter 
the data for the seven students. Suppose we want to use the last name as the key for 
sorting. Form an index array, which will have the sorted last names and pointers to the 
corresponding records. Therefore, you do not sort the records, but only the last names 
along with the pointers that point to the corresponding records. After sorting the last 
names, display the records in sorted order. You may use any sorting algorithm to sort the 
names and you can use structures to represent records. 
 
Problem 6 
Declare an array of 100 characters, which will be used to store 10 names. Each name 
consists of a maximum of 10 characters and is terminated by a NULL character. To 
locate the individual names, an integer (position) array of 10 elements is used, where 
each value in this array indicates the start of the corresponding name (see example below) 
 
 ‘F’,’a’,’d’,’i’,’\0’,’A’,’b’,’b’,’a’,’s’,’\0’,’B’,’a’,’d’,’e’,’r’,’\0’,’M’,’o’,’u’,’e’,’e’,’n’,’\0’,’K’,’a’,’r’,’i’,’m’,’\0’,’A’,’l’,’I’,’\0’, … 

 
 
0, 5, 11,17, 24, 30, … 

To sort the names, we simply move the values in the position array to the corresponding 
location. In other words, instead of swapping strings, we just swap positions (values in 
the position array). For the above example, we would have the following sorted position 
array: 5, 30, 11, 0, 24, 17, … 
 
Implement the above algorithm and prove it using an example. 
 
Remember that an array can be considered a pointer. For example, 
if 

char c[5]={‘a’,’b’,’c’,’\0’,’d’}; char *p; p=c; 
then 

*p is ‘a’, *(p+1) is ‘b’, *(p+2) is ‘c’, and p is “abc”. 
 

www.amal-aub.org



Problem 7 
Suppose we have three arrays: 
Array1 has 10 values that are random integers (use the rand() function) between 1 and 20 
Array2 has 6 values that are a random integers between 1 and 12 
Array3 has 4 values that are random integers between 13 and 20 
 
We need to sort the values across the arrays WITHOUT using temporary arrays. That is, 
Array1 will have the smallest 10 values, in sorted order, of all 20 values in the three 
arrays. Array2 will have the next 6 values in sorted order. And, array 3 will have the 
largest 4 values in sorted order. Your code must display the contents of each array before 
and after sorting. Include the function call srand(time(0)) at the top of your program so 
the randomly-generated numbers are different every time you run your program. 
 
Problem 8 
Suppose we have the following array 
 
 
5, 3.1, 10.4, 0.99, 2.4, 1.72, 7.7, 2.11, 4.45, 2.08, 8.248, 6, 4.5, 9

Sort it using the Radix Sort algorithm 
 
 

www.amal-aub.org


	Problem 2 
	Problem 3 
	 Problem 4 
	Problem 5 
	Problem 6 
	 Problem 7 
	Problem 8 


