EECE330: Data Structure and Algorithm analysis
Fall 2007

Instructor: N. Meskaoui

December 1, 2007

Quiz 2 Solution – Version A
Exercise 1 – multiple choice (27 points)
1. A solution is efficient if

 a. it solves a problem within the require resource constraints.

 b. it solves a problem within human reaction time.

 c. it solves a problem faster than other known solutions.

 d. a and b.

 *e. a and c.

 f. b and c.

2. Order the following steps to selecting a data structure to solve a problem.

 (1) Determine the basic operations to be supported.

 (2) Quantify the resource constraints for each operation.

 (3) Select the data structure that best meets these requirements.

 (4) Analyze the problem to determine the resource constraints that any solution must meet.

a) (1, 2, 3, 4)

b) (2, 3, 1, 4)

c) (2, 1, 3, 4)

*d) (1, 2, 4, 3)

e) (1, 4, 3, 2)
3. A growth rate applies to:

a) the time taken by an algorithm in the average case.

b) the time taken by an algorithm as the input size grows.

c) the space taken by an algorithm in the average case.

d) the space taken by an algorithm as the input size grows.

e) any resource you wish to measure for an algorithm in the average case.

*f) any resource you wish to measure for an algorithm as the input size grows.

4. Pick the growth rate that corresponds to the most efficient algorithm when n = 4.

a) 5n

b) 20 log n

c) 2n^2

*d) 2^n

5. For an air traffic control system, the most important metric is:

a) The best-case upper bound.

b) The average-case upper bound.

*c) The worst-case upper bound.

d) The best-case lower bound.

e) The average-case lower bound.

f) The worst-case lower bound.
6. When performing asymptotic analysis, we can ignore constants and low order terms because:

*a) We are measuring the growth rate as the input size gets large.

b) We are only interested in small input sizes.

c) We are studying the worst case behavior.

d) We only need an approximation.

7. In the linked-list implementation presented in the book, a header node is used:

*a) To simplify special cases.

b) Because the insert and delete routines won't work correctly without it.

c) Because there would be no other way to make the current pointer indicates the first element on the list.
8. When comparing the doubly and singly linked list implementations, we find that the doubly linked list implementation

*a) Saves time on some operations at the expense of additional space.

b) Saves neither time nor space, but is easier to implement.

c) Saves neither time nor space, and is also harder to implement.

9. We use a comparator function in the Dictionary class ADT:

a) to simplify implementation.

*b) to increase the opportunity for code reuse.

c) to improve asymptotic efficiency of some functions.
10. The relationship between a full and a complete binary tree is:

a) Every complete binary tree is full.

b) Every full binary tree is complete.

*c) None of the above.
11. When every node of a full binary tree stores a 4-byte data field and the internal nodes store two 4-byte child pointers, the overhead fraction is approximately:

a) one quarter.

b) one third.

*c) one half.

d) two thirds.

e) three quarters.

f) none of the above.

12. Which of the following is a true statement:

a) In a BST, the left child of any node is less than the right child, and in a heap, the left child of any node is less than the right child.

*b) In a BST, the left child of any node is less than the right child, but in a heap, the left child of any node could be less than or greater than the right child.

c) In a BST, the left child of any node could be less or greater than the right child, but in a heap, the left child of any node must be less than the right child.

d) In both a BST and a heap, the left child of any node could be either less than or greater than the right child.

13. The primary ADT access functions used to traverse a general tree are:

a) left child and right sibling

b) left child and right child

*c) leftmost child and right sibling

d) leftmost child and next child

14. The goal of a topological sort is to:

a) Sort all of the graph vertices by value.

*b) Sort all of the graph vertices so that each vertex is listed prior to

any others that depend on it.

c) Sort all of the graph vertices by distance from the source vertex.
15. For a graph of n nodes, no algorithm to solve the all-pairs shortest paths problem could possibly have a cost less than:

a) Omega(log n)

b) Omega(n)

c) Omega(n log n)

*d) Omega(n^2)

e) Omega(2^n)
16. The single-source shortest path problem can be used to:

a) Sort all of the graph vertices by value.

b) Sort all of the graph vertices so that each vertex is listed prior to any others that depend on it.

*c) Sort all of the graph vertices by distance from the source vertex.

17. In the all-pairs shortest paths problem, a k-path is:

a) The shortest path to vertex k.

b) The sorest path that goes through vertex k.

*c) A path such that all intermediate vertices have index less than k.
Exercise 2 – True or False (15 points)
	Asymptotic analysis refers to The growth in cost of an algorithm as the input size grows towards

 Infinity (T)
	T F

	When we describe the lower bound for a problem we use the lower bound for the best algorithm we know (F) it is the The greatest lower bound that we can prove for the best algorithm that could possibly exist.
	T F

	When the upper and lower bounds for an algorithm are the same, we use big-Oh notation. (F) Theta notation.
	T F

	For sequential search, The best case is asymptotically better than the average and worst

cases.(T)
	T F

	The Full Binary Tree Theorem states that The number of leaves in a non-empty full binary tree is one less than the number of internal nodes.(F) it is one more than the number of internal nodes.
	T F

	The correct traversal to use on a BST to visit the nodes in sorted order is Inorder traversal. (T)
	T F

	Assume a BST is implemented so that all nodes in the left subtree of a given node have values less than that node, and all nodes in the right subtree have values greater than or equal to that node. When implementing the delete routine, we must select as its replacement: The greatest value from the left subtree.(F) The least value from the right subtree.
	T F

	The Huffman coding tree works best when the frequencies for letters are Skewed so that there is a great difference in relative frequencies for various letters.(T)
	T F

	7. The most space efficient representation for general trees will typically be :List of children. (F) it is Left-child/right sibling
	T F

	The easiest way to represent a general tree is to convert to a binary tree.(T)
	T F

Exercise 3 – graphs processing (35 points)
1. Show the order in which the edges in the following graph are visited when running the Prim’s MST algorithm starting at vertex A. Show the final MST.
[image: image1.png]

[image: image2.png]

The order is A, D, F, B, E, C, G
2. Consider the following Queue-based Topological search algorithm used for laying out the vertices of a DAG in a linear order to meet prerequisite rules.

void topsort(Graph* G, Queue<int>* Q) {

 int Count[G->n()];

 int v, w;

 for (v=0; v<G->n(); v++) Count[v] = 0;
 for (v=0; v<G->n(); v++)
 for (w=G->first(v); w<G->n(); w = G->next(v,w))
 Count[w]++;
 for (v=0; v<G->n(); v++)
 if (Count[v] == 0)
 Q->enqueue(v);
 while (Q->length() != 0) {
 Q->dequeue(v);

 printout(v);
 for (w=G->first(v); w<G->n(); w = G->next(v,w)) {
 Count[w]--;
 if (Count[w] == 0)

 Q->enqueue(w);
 }}}

a. What will be the result of running this algorithm on the following directed graph?
b. Can we use this algorithm to write an algorithm that detects a cycle in a graph? Explain.

void CycleQBtopsort(Graph* G, Queue<int>* Q) {

 int* Count=new int[G->n()];

 int v, w;

 cout<<"\n\nStart Queue based Topological sort \n";

 for (v=0; v<G->n(); v++) Count[v] = 0; // Initialize

 for (v=0; v<G->n(); v++) // Process edges

 for (w=G->first(v); w<G->n(); w = G->next(v,w))

 Count[w]++; // Compute the # edges to each vertex

 // e.g., count[J4] is incremented when J2 is processed and when J3 is processed

 for (v=0; v<G->n(); v++)

 if (Count[v] == 0)

 Q->enqueue(v); // Add the vertices that have no prerequisites

 while (Q->length() != 0) {

 Q->dequeue(v); // Process each vertex in the Q (has no prereq.)

 cout<<labels1[v]<<" "; // PreVisit for v

// Since we processed v, treat it as if it did not exist  decrement count for

// all vertices that are connected to v (i.e., are in the row for v in the matrix)

 for (w=G->first(v); w<G->n(); w = G->next(v,w)) {

 Count[w]--; // One less prereq for each vertex connected to v

 if (Count[w] == 0) // Put each free vertex (no prereq.) in Q

 Q->enqueue(w);

}}

for (v=0; v<G->n(); v++)

{if (Count[v] != 0) {cout<<"Cycle detected"<<endl;break;}}

}
[image: image3.png]@ HEE

cart Queue hased Topalogical sort)
31 33 Cycle detected =
o

3. The single-source shortest paths problem finds the shortest paths from a specific vertex in a graph to all other vertices. Is it possible to use the single-source shortest paths’ algorithm to resolve the problem of the single-destination shortest paths? The single-destination shortest paths problem finds the shortest paths from all vertices to a specific vertex in a graph. Justify your answer without writing an algorithm.
Simply reverse the direction of all the edges, then run the standard algorithm

for Single-Source Shortest Paths.
4. To be able to implement an iterative preordered DFS traversal without using a second stack to reverse the order of neighbors processing we suggest to add to the graph ADT the “last(int v)” and “prev(int v, int w)”operations that returns respectively the last neighbor of a vertex “v” and the previous neighbors to a specific neighbor “w” of a vertex “v”. Discuss the cost of these new operations for both graphs implementations (matrix and list).
To compare the matrix and list implementations. For sparse and dense graphs
5. Modify the Dijkistra’s single-source shortest paths algorithm to find the shortest path from one source vertex to just one destination vertex. The algorithm should also print out the different vertices of the shortest path leading to this destination.

[image: image4.png]

Example: to find the shortest path between 0 and 4. The algorithm’s execution outputs:

[image: image5.png]&
The shortest path from 8 to 4
4 3240

The algorithm is:

 //In the main

for (i=0; i<G1->n(); i++)

D1[i] = INFINITY;V1[i]=INFINITY;

D1[0] = 0;V1[0]=0;

DijkstraQuiz2(G1, D1, 0,V1,4);

cout << "The shortest path from 0 to 4 is :"<<endl;cout<<"4 ";

for(int k=4; k>0; k=V1[k]){

cout <<" <- "<<V1[k];

}

//The method

void DijkstraQuiz2(Graph* G, int* D, int s, int* V,int dest) {

 int i, v, w;

 for (i=0; i<G->n(); i++) { // Process the vertices

 v = minVertexQ2(G, D);

 if (D[v] == INFINITY) return; // Unreachable vertices

 G->setMark(v, VISITED);

if(v==dest) return;

 for (w=G->first(v); w<G->n(); w = G->next(v,w))

if (D[w] > (D[v] + G->weight(v, w))){

D[w] = D[v] + G->weight(v, w);

V[w]=v;}

 }

}

int minVertexQ2(Graph* G, int* D) { // Find min cost vertex

 int i, v;

 for (i=0; i<G->n(); i++) // Set v to an unvisited vertex

 if (G->getMark(i) == UNVISITED) { v = i; break; }

 for (i++; i<G->n(); i++) // Now find smallest D value

 if ((G->getMark(i) == UNVISITED) && (D[i] < D[v]))

 v = i;

 return v;

}
6. Write two possible topological sorts that can results from the following graph.
[image: image6.png]

a. Why different implementations of the topological sort algorithm on a DAG could lead to different valid orders.

The structure used to store vertices affect the sorting. The possible sorts are:

7,5,3,11,8,2,10,9

7,5,11,2,3,10,8,9

3,7,8,5,11,10,9,2

3,5,7,11,10,2,8,9

Exercise 4 – Trees processing (20 points)
1. Draw the Binary tree that represents the following integer arithmetic expression:
(((3+4)*(68-25))/(5+(6*9)))

a. Write an algorithm that prints out the postfix representation of the arithmetic operation represented by the tree.

void postorder(BinNode<Elem>* subroot) {
 if (subroot == NULL) return; // Empty
 postorder (subroot->left());
 postorder (subroot->right());
 cout<<subroot<<” “; }
b. Write an algorithm that prints out the prefix representation of the arithmetic operation represented by the tree.
void preorder(BinNode<Elem>* subroot) {
 if (subroot == NULL) return; // Empty
 cout<<subroot<<” “;
 preorder(subroot->left());
 preorder(subroot->right());}
2. Write an algorithm that finds all the ancestors of a specific node (identified by its index) in a binary tree implemented as an array.

For example if the values of the tree are equal to the position of every element, the result will be as follows.

[image: image7.png]= BEE]

//ancestors path of a node

cout<<"Enter position: ";cin>>p;

myTree.getVal(p,val);

cout<<"Ancestors of "<<val<<" are: ";

while(p!=0){

p=myTree.getParent(p);

myTree.getVal(p,val);
 cout<<val<<" ";}

3. Explain briefly how to convert a forest of general trees into a single binary tree. Convert the following forest of general trees into a single binary tree.

Bonus

1. Modify the DFS graph traversal to have an algorithm that detects a cycle in an undirected graph of V vertices. The algorithm should stop processing vertices after the detection of the first cycle.

void DFS(Graph* G, int v) {

 //PreVisit(G, v);

 G->setMark(v, VISITED);

 for (int w=G->first(v); w<G->n();

 w = G->next(v,w))

 if (G->getMark(w) == UNVISITED)

 DFS(G, w);

 //PostVisit(G, v);

bool UGCycleDFS(Graph* G, int v, int* V) {

 G->setMark(v, VISITED);

 bool foundCycle=false;

 for (int w=G->first(v); w<G->n();w = G->next(v,w)){

 if (foundCycle==false){

 if (G->getMark(w) == UNVISITED){

 V[w]=v;

 foundCycle=UGCycleDFS(G, w,V);if(foundCycle) {break;}}

else {

if(V[v]!=w){

 cout<<"Detected cycle starting at "<<v<<

 ". The revisited node is "<<w<<endl;

 foundCycle=true;}

}}}

return foundCycle;}

Good Luck[image: image8][image: image9]
0

1

2

3

4

5

*

/

6888

5

+

+

25

3

6

4

-

*

9

1
2

