MATH102 mid-term quiz 1

Saturday 17 March 2012
Name: \qquad ID: \qquad
Circle your recitation section: $\quad 5(8 \mathrm{am}) \quad 6$ (9am) 7 (11am) 8 (12am)

Question:	1	2	3	4	5	6	7	Bonus	Total
Points:	18	12	12	12	19	12	15	5	100
Score:									

1. (18 points) Evaluate the following indefinite integrals. Show your working.
(a) $\int \frac{x \mathrm{~d} x}{x^{2}-1}$

Solution: Substitute $u=x^{2}-1$, so that $\mathrm{d} u=2 x \mathrm{~d} x$. Then

$$
\int \frac{x \mathrm{~d} x}{x^{2}-1}=\frac{1}{2} \int \frac{1}{u} \mathrm{~d} u=\frac{1}{2} \ln |u|+C=\frac{1}{2} \ln \left|x^{2}+1\right|+C .
$$

(b) $\int \frac{\mathrm{d} x}{x^{2}-2 x+2}$

Solution: Firstly, complete the square: $\int \frac{\mathrm{d} x}{x^{2}-2 x+2}=\int \frac{\mathrm{d} x}{(x-1)^{2}+1}$.
Now substitute $u=x-1$ to obtain

$$
\int \frac{\mathrm{d} x}{(x-1)^{2}+1}=\int \frac{\mathrm{d} u}{u^{2}+1}=\tan ^{-1}(u)+C=\tan ^{-1}(x-1)+C .
$$

(c) $\int 10^{x} \mathrm{~d} x$

Solution: Use the definition of 10^{x} as $e^{(\ln 10) x}$:

$$
\int 10^{x} \mathrm{~d} x=\int e^{(\ln 10) x} \mathrm{~d} x=\frac{1}{\ln 10} e^{(\ln 10) x}+C=\frac{1}{\ln 10} 10^{x}+C .
$$

(You may like to know that $\frac{\mathrm{d}}{\mathrm{d} x}\left(\tan ^{-1} x\right)=\frac{1}{1+x^{2}}$. .
2. (12 points) Evaluate the following limits. Show your working.
(a) $\lim _{x \rightarrow 0} \frac{e^{x}-1}{x}$

Solution:

$$
\begin{array}{rlr}
\lim _{x \rightarrow 0} \frac{e^{x}-1}{x} & =\lim _{x \rightarrow 0} \frac{e^{x}}{1} \quad \quad \text { by l'Hôpital's rule } \\
& =1
\end{array}
$$

(b) $\lim _{x \rightarrow \infty} \frac{(\ln x)^{2}}{x+1}$

Solution:

$$
\begin{aligned}
\lim _{x \rightarrow \infty} \frac{(\ln x)^{2}}{x+1} & =\lim _{x \rightarrow \infty} \frac{2 \ln x(1 / x)}{1}=\lim _{x \rightarrow \infty} \frac{2 \ln x}{x} & & \text { by l'Hôpital's rule } \\
& =\lim _{x \rightarrow \infty} \frac{2 / x}{1} & & \text { by l'Hôpital's rule } \\
& =0 & &
\end{aligned}
$$

3. (a) (6 points) Indicate which of the following functions are one-to-one. For each function which is not one-to-one, find two different values of x for which the function gives the same result.
i. $f(x)=(x-1)^{3}$

Solution: This is one-to-one.
ii. $g(x)=(x-1)^{4}$

Solution: This is not one-to-one. For example, $g(0)=g(2)=1$.
iii. $h(x)=1 /(x-1)$

Solution: This is one-to-one.
(b) (6 points) I am thinking of a function f, which satisfies $f(2)=3$ and $f^{\prime}(2)=-2$. If I tell you that f has an inverse f^{-1}, write numbers in the four blank spaces to show two facts you can deduce about f^{-1} :

$$
f^{-1}(3)=2 ; \quad\left(f^{-1}\right)^{\prime}(3)=-1 / 2 .
$$

4. (12 points) Write letters in the boxes to match the following functions to their graphs (which are not all to the same scale).

Functions
A. $y=\ln |x|$
B. $y=x e^{-x}$
C. $y=e^{-x^{2}}$
D. $y=\tan ^{-1} x$

C

D

B

Graphs

A

5. (a) (9 points) Suppose a hot object is placed in a cool environment. If we let $H(t)$ denote the temperature of the object at time t, and H_{S} the constant temperature of the environment, then Newton's law of cooling states that

$$
\frac{\mathrm{d} H}{\mathrm{~d} t}=-k\left(H-H_{S}\right)
$$

where k is some constant depending on the physical conditions. Show how to solve this differential equation to get the solution

$$
H(t)=H_{S}+A e^{-k t}
$$

for some constant A.

Solution:

$$
\begin{aligned}
\frac{\mathrm{d} H}{\mathrm{~d} t} & =-k\left(H-H_{S}\right) & & \\
\frac{1}{H-H_{S}} \frac{\mathrm{~d} H}{\mathrm{~d} t} & =-k & & \text { (rearranging) } \\
\int \frac{\mathrm{d} H}{H-H_{S}} & =\int(-k) \mathrm{d} t & & \text { (integrating both sides with respect to } t \text {) } \\
\ln \left(H-H_{S}\right) & =-k t+C & & \text { (no need for absolute value since } H-H_{S}>0 \text {) } \\
H-H_{S} & =e^{-k t+C} & & \text { (exponentiating both sides) } \\
H-H_{S} & =A e^{-k t} & & \text { (letting } A=e^{C} \text {) } \\
H & =H_{S}+A e^{-k t} . & &
\end{aligned}
$$

Question 5 (continued)

(b) (10 points) I like to drink my coffee at precisely $55^{\circ} \mathrm{C}$. This morning I took my coffee at $95{ }^{\circ} \mathrm{C}$ and left it to cool in a room at $15{ }^{\circ} \mathrm{C}$. Unfortunately, I left it too long: after 6 minutes, the coffee had already cooled to $35^{\circ} \mathrm{C}$. Assuming that my coffee obeys Newton's law of cooling, how long should I have left the coffee before drinking it?

Solution: From the question, $H_{S}=15$. We have two further pieces of information: when $t=0, H=95$; and when $t=6, H=35$.

1. Substituting $t=0$ and $H=95$ into the equation from part (a) gives $95=15+A$, so $A=80$.
2. Substituting $t=6$ and $H=35$ gives $35=15+80 e^{-6 k}$, so $e^{-6 k}=20 / 80=$ $1 / 4$ and $k=-\ln (1 / 4) / 6$.
3. Now substitute $H=55$ and solve for t : we get $55=15+80 e^{-k t}$, so $e^{-k t}=40 / 80=1 / 2$ and therefore

$$
t=\frac{\ln (1 / 2)}{-k}=6 \times \frac{\ln (1 / 2)}{\ln (1 / 4)}=6 \times \frac{1}{2}=3 .
$$

6. (12 points) Using integration by parts, evaluate the definite integral $\int_{0}^{1} x^{2} e^{-x} \mathrm{~d} x$. Show your working.

Solution:

$$
\begin{array}{rlrl}
\int_{0}^{1} x^{2} e^{-x} \mathrm{~d} x & =\left[-x^{2} e^{-x}\right]_{0}^{1}+\int_{0}^{1} 2 x e^{-x} \mathrm{~d} x & & \text { (integration by parts) } \\
& =\left[-x^{2} e^{-x}\right]_{0}^{1}+\left[-2 x e^{-x}\right]_{0}^{1}+\int_{0}^{1} 2 e^{-x} \mathrm{~d} x & \text { (integration by parts again) } \\
& =\left[-x^{2} e^{-x}\right]_{0}^{1}-\left[2 x e^{-x}\right]_{0}^{1}+\left[-2 e^{-x}\right]_{0}^{1} & \\
& =\left[e^{-x}\left(-x^{2}-2 x-2\right)\right]_{0}^{1} & \\
& =e^{-1}(-1-2-2)-e^{0}(-2) & \\
& =-5 e^{-1}+2 \approx 0.1606
\end{array}
$$

7. (15 points) Indicate whether each of the following statements is true or false. You do not need to justify your answers. Each correct answer scores 3 points, but if you answer and get it wrong then you lose one point.
$\mathbf{T} \quad \mathbf{F} \quad 3^{x}$ grows faster then 2^{x} as $x \rightarrow \infty$.

T $\quad \mathbf{F} \quad \log _{2} x$ grows faster than $\log _{3} x$ as $x \rightarrow \infty$.
$\mathbf{T} \quad \mathbf{F} \quad$ For any value of x, we have $\sin ^{-1}(\sin x)=x$.

T F For any value of x, we have $\sin \left(\sin ^{-1} x\right)=x$. It could be argued that this is only true for $-1 \leq x \leq 1$, since it doesn't even make sense for other values of x, so either answer to this question was counted as correct.

T $\quad \mathbf{F} \quad$ The function $y=\cos 2 x$ satisfies the differential equation $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}+y=0$.

Bonus question (5 points)

Find two functions f and g such that $f \circ g$ is one-to-one, but f is not one-to-one.

Solution: One possible answer is $g(x)=e^{x}$ and $f(x)=x^{2}$.

