Dr. H. Yamani
Name:
Do each of the following problems. Show all your work. No work shown. No credit. ****GOOD LUCK****

1. Evaluate the following integrals:
a. $\quad \int \frac{1}{e^{x}+1} d x$
b $\quad \int \frac{3}{x^{2}+8 x+17} d x$
c. $\int \frac{x^{3}-x^{2}+1}{x^{2}+x} d x$
d. $\int \frac{x^{2}+9}{x^{2}+1} d x$
e. $\int \frac{d x}{\sqrt{-x^{2}+4 x-3}}$
2. Evaluate the following integrals using trigonometric substitution: (5 points each)
a. $\int \frac{1}{\left(x^{2}+1\right)^{3 / 2}} d x$
b. $\int \frac{d x}{\sqrt{16-x^{2}}}$
3. Evaluate the following improper integrals:
(5 points each)
a. $\int_{0}^{1} \ln x d x$
b. $\quad \int_{2}^{\infty} \frac{3 x-1}{x^{3}-x^{2}} d x$
4. Test the following integrals for convergence or divergence. Explain. (5 points each)
a. $\quad \int_{1}^{\infty} \frac{7}{\left(x^{9}+9\right)} d x$
b. $\quad \int_{1}^{\infty} \frac{1}{\left(3 \sqrt{x}+x^{1 / 3}\right)} d x$
5. Find the area of the region bounded between the curve $f(x)=x^{2}+x$ and the line $g(x)=x+4 .(5$ points $)$
6. Use the washer method to find the volume of the solid generated by revolving the region bounded by $y=x^{2}$ and the line $y=1$ about the line $y=2$.
7. Use Logarithmic differentiation to find the derivative of y with respect to x. (5 points)

$$
y=x \frac{\sqrt{x^{3}+1}}{(x-1)^{3 / 4}}
$$

8. Find an equation for the plane through the point $(1,2,3)$ parallel to

$$
\mathbf{u}=2 \mathbf{i}+3 \mathbf{j}+\mathbf{k} \text { and } \mathbf{v}=\mathbf{i} \quad \mathbf{j}+2 \mathbf{k}
$$

9. Find the area of a triangle with vertices $\mathrm{P}(2,-1,4), \mathrm{Q}(1,0,-1), \mathrm{R}(1,2,3)$ (5 points)
10. Find parametric equations for the line through $P(1,2,5)$ and $Q(-1,3,2)$. (5 points)
11. Find the angle between the planes $3 x-y+2 z=0$ and $x+y+z=1$
12. Determine the following limit:

$$
\lim _{x \rightarrow \infty}\left(1-\frac{1}{2 x}\right)^{x}
$$

13. Find the center and radius of the sphere.

$$
3 x^{2}+3 y^{2}+3 z^{2}+2 y-2 z=9
$$

