Name:
Do each of the following problems. Show all your work. No work shown. No credit.

****GOOD LUCK****

Problem 1. (Answer on pages $\mathbf{1 , 2 , 3 , 4}$ of the booklet)
Evaluate the following integrals:
a. $\int \frac{x e^{x}}{(x+1)^{2}} d x$
b. $\int \frac{x^{3}}{\sqrt{1+x^{2}}} d x$
c. $\int \frac{x^{2}+x-2}{(3 x-1)\left(x^{2}+1\right)} d x$
d. $\quad \int_{1}^{\infty} \frac{4}{\left(x^{9}+100\right)^{5 / 3}} d x \quad$ (Test for convergence or divergence only). Explain

Problem 2. (Answer on page 5 of the booklet
Find the following limits: (5 pts each)

1) $\lim _{x \rightarrow \infty}\left(\frac{x}{3^{\ln x}}\right)$
2) $\lim _{x \rightarrow \infty}\left(\frac{x-2}{x}\right)^{3 x}$

Problem 3. (Answer on page 6 of the booklet)
(5 pts) Find the length of the curve
$x=5 \cos t-\cos 5 t \quad y=5 \sin t-\sin 5 t \quad 0 \leq t \leq 2 \pi$
Problem 4 (Answer on pages 7, 8, 9, 10 of the booklet)
a. (5 pts) Find the distance from the point $\mathrm{S}(1,1,3)$ to the plane $3 x+2 y+6 z=6$
b. (5 pts) Find the distance from the point $S(1,1,5)$ to the line
$\mathrm{L}: \quad x=1+t$,
$y=3-t$,
$z=2 t$
c. $(5 \mathrm{pts})$ Find an equation for the plane through the point $(2,1,-1)$ and perpendicular to the line of intersection of the planes
$2 x+y-z=3, \quad x+2 y+z=2$
d. $(5 \mathrm{pts})$ Find an equation for the plane through the point $(2,4,5)$ perpendicular to the line
$\mathrm{L}: x=5+t, \quad y=1+3 t, \quad z=4 t$
Problem 5. (Answer on pages 11, 12 of the booklet).
a. (5 pts) Find the area of a parallelogram determined by the vectors $\mathbf{u}=-3 \mathbf{i}-2 \mathbf{j}+2 \mathbf{k}$ and $\mathbf{v}=-2 \mathbf{i}+2 \mathbf{j}+3 \mathbf{k}$
b. (5 pts) Write $\mathbf{u}=2 \mathbf{i}-\mathbf{j}+3 \mathbf{k}$ as a sum of a vector parallel to $\mathbf{v}=4 \mathbf{i}-\mathbf{j}+2 \mathbf{k}$ and a vector orthogonal to \mathbf{v}.

Problem 6. (Answer on pages 13, 14, 15 of the booklet)

(25 pts) Determine the unit tangent vector \mathbf{T}, the principal unit normal vector \mathbf{N}, the binormal vector \mathbf{B}, the curvature κ, and the torsion τ for the curve

$$
\mathbf{r}(\mathrm{t})=(3 \sin t) \mathbf{i}+(3 \cos t) \mathbf{j}+4 t \mathbf{k}
$$

Problem 7. (Answer on page 16 of the booklet)

(10 pts) Without finding \mathbf{T} and \mathbf{N}, write the acceleration of the curve $\mathbf{r}(\mathrm{t})=(a \cos t) \mathbf{i}+(a \sin t) \mathbf{j}+b t \mathbf{k}$ in the form $\mathbf{a}=\mathrm{a}_{\mathrm{T}} \mathbf{T}+\mathrm{a}_{\mathrm{N}} \mathbf{N}$

