Lecture 1:

Precision of Chemical Measurements

Uncertainty on a measurement

- In every measurement there is a possibility of experimental error. The margin of error in a given measurement is called the uncertainty on that measurement. The uncertainty depends on the measuring tool or instrument.
- Analytical balances:

Instrument	Uncertainty
Mettler model PB 302	$\pm \mathbf{0 . 0 1} \mathbf{g} \quad \leftarrow$ least precise
Mettler model PE 160	$\pm \mathbf{0 . 0 0 1} \mathbf{~ g}$
Mettler model AB 104/204	$\pm 0.0001 \mathbf{g} \quad \leftarrow$ most precise

Analytical balance
Mass of beaker + water
$=60.3997 \mathrm{~g}$

Reporting volume measurements

Tool	Uncertainty	Correct volume writing
10 mL graduated cylinder	$\pm 0.1 \mathrm{~mL}$	8.3 mL (for example)
50 mL buret	$\pm 0.02 \mathrm{~mL}$	24.85 mL (for example)
25 mL volumetric pipet	$\pm 0.06 \mathrm{~mL}$	25.00 mL
500 mL volumetric flask	$\pm 0.25 \mathrm{~mL}$	500.0 mL

Buret reading

Uncertainty $= \pm 0.02$ or 0.03 mL

Significant figures

- Definition: In a given number, each digit that appears to the right of the first non-zero digit, including that latter digit, is a significant digit (or significant figure: Sig. Fig.).
- Examples:
$0.0032 \quad 2$ Sig. Fig.
$1.2100 \quad 5$ Sig. Fig.
5.00 3 Sig. Fig.

5
1 Sig. Fig.

- Note: Zeroes to the left of the first non-zero digit and exponents are NOT significant.
$5.0 \times 10^{2} \quad 2$ Sig. Fig.
$500 \times 10^{6} \quad 3$ Sig. Fig.
$0.01 \times 10^{-4} \quad 1$ Sig. Fig.
- Physical Significance: A given number (measurement) contains significant figures that are all certain, except one (the last one) that is uncertain.

Addition and subtraction

- The result must be expressed to the same degree of precision as that of the least precise component in the operation.

- Example from the Chemistry lab:

Upper reading of buret (mL)	13.35
Lower reading of buret (mL)	25.58
Volume	12.23

Multiplication and division

- Keep as many significant figures in the result as there are in the component with the least number of significant figures.

A comprehensive example from the Chemistry lab

- We want to prepare 500 mL of a standard solution of $\mathrm{KMnO}_{4} \sim 0.2 \mathrm{M}$.
- Let us calculate roughly the amount of KMnO_{4} needed to have approximately a 0.2 M solution:

```
\(\mathrm{m}_{\text {KMnO4 }}=\mathrm{M}_{\text {KMnO4 }} \times\) Molarity \(\times \mathrm{V}_{\text {soln }}\)
    \(\cong 158(\mathrm{~g} / \mathrm{mol}) \times 0.2(\mathrm{~mol} / \mathrm{L}) \times 0.5(\mathrm{~L})\)
    \(\cong 16 \mathrm{~g}\)
```

- Now weigh accurately about 16 g of KMnO_{4} on a PE 160 Mettler balance:

Mass of beaker	19.346 g
Mass of beaker + permanganate sample	35.297 g
Mass of permanganate sample	15.951 g

Preparation of a primary standard

- Transfer this accurate amount of KMnO_{4} quantitatively into a 500 mL volumetric flask.
- Make up to the mark. The uncertainty on the volumetric flask is marked $\pm 0.25 \mathrm{~mL}$. Thus the volume is reported as $500.0 \mathrm{~mL} \equiv 0.5000 \mathrm{~L}$ (4 Sig. Fig.).

Calculation of the molarity of the primary

 standard- Now, I can calculate the accurate Molarity of my standard solution:

Molarity $=\frac{m_{\mathrm{KMnO}_{4}}}{\mathrm{M}_{\mathrm{KMnO}_{4}} \times \mathrm{V}_{\text {soln }}}$
$=\frac{15.951(\mathrm{~g})}{158.04(\mathrm{~g} / \mathrm{mol}) \times 0.5000(\mathrm{~L})}$
$=0.201860288 \mathrm{M}$
$\rightarrow \underline{0.2019 \mathrm{M}}$ (4 sig. fig.)

Wash bottle

Another illustrative calculation

$$
\begin{aligned}
&= \frac{0.876 \equiv 0.9}{(4.1-3.224)} \times 7.05 \\
& 0.00698 \\
&= 909.025788
\end{aligned}
$$

$=9 \times 10^{2}$

