American University of Beirut

Department of Electrical and Computer Engineering

EECE 310 Electronics

3 hours (180 minutes)

Final Exam - Closed Book Jan. 24, 2012

ALL QUESTIONS ARE GRADED EQUALLY PENALTY IS 5 TO 1

NAME	ID number	signature here
SIGN: <i>I HAVE NEITHER GIVE</i>	IN NOR RECEIVED AID ON THIS EXAM	Text

- ✤ Unless otherwise specified, assume that:
- $V_{\rm T} = 25 \, {\rm mV}$
- $|V_{\text{BE(ACTIVE)}}| = 0.7 \text{ V}$
- $|V_{\text{BE(SAT)}}| = 0.7 \text{ V}$
- $|V_{\text{CE(SAT)}}| = 0.2 \text{ V}$
- $|V_{\text{CE(EDGE OF SAT)}}| = 0.3 \text{ V}$
- All capacitors are very large
- Body effect, base-width modulation, and channel-length modulation are negligible

1. In the circuit shown below, diode D1 has $I_{s1} = 10^{-16}$ A and $n_1 = 1$ while diode D2 has $I_{s2} = 10^{-15}$ A and $n_2 = 1$. The total current is I = 7.48 mA. Calculate the forward current (in mA) in diode D1. a) 0.68 b) 0.62 c) 0.54 d) 0.58 e) 0.50

2. In the previous problem, compute the small-signal resistance r_d (in Ω) of diode D2. a) 4.03 b) 3.68 c) 4.31 d) 5.00 e) 4.63

3. In the circuit shown below $R_1 = R_L = 180 \Omega$. The two diodes D_1 and D_2 are modeled by $V_{D0} = 0.6 \text{ V}$, $r_D = 10 \Omega$, when conducting, and by an open circuit when OFF. Find the value of the source voltage v_s (in V) if the output voltage v_O is -0.70 V. a) -4.0 b) -4.8 c) -2.4 d) -3.2 e) -1.6

4. In the bridge rectifier shown below, the RMS value of the sinusoidal voltage v_s is 20 V. The diodes are modeled by a short circuit when conducting and by an open circuit when OFF. If the average *diode* current is 1.3 mA, compute the resistance *R* (in k Ω).

5. The NMOS transistor shown below has $V_t = 1$ V and $V_A = 50$ V. It is biased to give $V_{GS} = 5$ V and $I_D = 0.5$ mA when $R_D = 20$ k Ω . Find the small-signal output resistance R_0 (in Ω).

a) 943.7 b) 1787.5 c) 2547.2 d) 3235.3 e) 3862.1 $+V_{DD}$

6. The PMOS transistor shown below has $V_t = -1$ V and $k'_p W/L = 1 \text{ mA/V}^2$. If the power dissipated in R_D is 0.5 mW, find R_D (in k Ω). a) 3 b) 4 c) 6 d) 5 e) 2

7. A BJT for which the Early voltage is $V_A = 48$ V operates at $V_{CE} = 2$ V and at a collector current of 100 µA. Find the value of V_{CE} (in V) at which the collector current becomes 115 µA. Assume that V_{BE} is positive and remains constant. a) 14.5 b) 9.5 c) 12 d) 4.5 e) 7 The circuit shown below is used to establish $V_{CE} = 3$ V with $V_{CC} = 10$ V and $R_C = 5$ k Ω . The BJT used has $\beta = 27$.

10. The circuit shown below has $R_C = 0.5 \text{ k}\Omega$, $R_E = 1.0 \text{ k}\Omega$, $V_{CC} = 14 \text{ V}$, $V_{EE} = -15 \text{ V}$, and $V_{BB} = 12 \text{ V}$. Determine the value of R_B (in k Ω) so that the transistor *saturates* with $\beta_{forced} = 10$.

11. The circuit shown below uses a PNP transistor having $\beta = 79$. The largest value to which R_C can be raised while the transistor remains in the active mode, but at the edge of saturation, is 3 k Ω . Find R_E (in k Ω). Assume $V_{EC(Edge of Sat)} = 0.3$ V. a) 5.4 b) 4.5 c) 1.8 d) 3.6 e) 2.7

The circuit shown below uses a transistor having $\beta = 99$. Assume $R_c = 2 \text{ k}\Omega$, $R_E = 2 \text{ k}\Omega$, and $V_{CC} = 16 \text{ V}$.

12. Determine V_{CE} (in V) if $R_1 = 80 \text{ k}\Omega$ and $R_2 = 20 \text{ k}\Omega$. a) 2.2 b) 6.8 c) 4.5 d) 11.4 e) 9.1

13. Determine the ratio I_C / I_B if $R_1 = 20 \text{ k}\Omega$ and $R_2 = 80 \text{ k}\Omega$. a) 2.9 b) 2.3 c) 15.5 d) 6.3 e) 4.0 In the circuit shown below, the transistor has $\beta = 50$. It is biased in the active region such that the BJT transconductance $g_m = 50$ mA/V. The resistors used are $R_S = 1$ k Ω , $R_C = 3$ k Ω , and $R_F = 20$ k Ω .

The circuit shown below has I = 1 mA. The transistor is in the active region and has $\beta = 60$.

17. Determ	ine the BJT sm	all-signal resis	tance $r\pi$ (in k Ω).	
a) 3	b) 2	c) 1	d) 2.5	e) 1.5	
18. The am	plifier small-si	gnal input resis	stance R_i is 200	$k\Omega$. Find the v	alue of R_L (in
a) 4.85	b) 3.25	c) 2.44	d) 1.95	e) 1.63	

In the circuit shown below, the BJT has $\beta = 80$ and $V_A = 15$ V. The BJT is biased at $V_{CE} = 5$ V, and $I_C = 1$ mA. Assume that $R_C = 4.7$ k Ω , and that R_B is 10 k Ω . V_{BB} and V_{CC} are pure DC sources.

19. A 26 mV peak voltage at the signal source v_s results in a 5 mV peak signal at v_{be} . Find the value of R_s (in k Ω).

a) 8 b) 9 c) 5 d) 6 e) 7

20. The small-signal voltage gain (v_{ce}/v_{be}) is -100 V/V. Find the value of R_L (in k Ω). a) 4.9 b) 7.3 c) 21.3 d) 10.7 e) 5.8

21. Find the small-signal output current i_{out} (in terms of v_{be}) when the load R_L is equal to 20 k Ω . $i_{out} / v_{be} =$ a) $-0.14g_m$ b) $-0.12g_m$ c) $-0.20g_m$ d) $-0.16g_m$ e) $-0.18g_m$

22. In the circuit shown below, the diode is ideal. The source voltage v_S is a square wave with a maximum value of V_I , and a minimum value $V_2 = -10$ V. The resulting output is a square wave with a maximum value of V_X and a minimum value of V_Y . Find the value of V_I (in V) if the value of the voltage level V_X at the output is 7 V and $R_I = 100 \Omega$.

a) 10 b) 8 c) 9 d) 7 e) 6

23. In the previous problem, find the value of the resistor R_1 (in Ω), if the value of the voltage level V_T at the output is -3.33 V. a) 100 b) 400 c) 150 d) 300 e) 200

24. In the circuit shown below, the diode is ideal, and the source voltage is a periodic square wave with levels -10 V (minimum) and 10 V (maximum). The period of the square wave is T = 10 ms, while the time constant is $\tau = RC = 4$ ms. Assuming that the capacitor is uncharged initially at t = 0, find the output voltage v_o (in V) at time instant t = 7 ms.

25. The noise margins in a MOS inverter are equal to 1.5 V. Find the value of V_{IH} (in V) if the output high voltage V_{OH} is 3.1 V. a) 1.6 b) 1.7 c) 2.0 d) 1.8 e) 1.9

In the circuit shown below, the MOSFET is characterized by $k'_n(W/L) = 1 \text{ mA/V}^2$ and $V_t = 1 \text{ V}$. We want to design for $I_D = 1.2 \text{ mA}$ and $V_{DS} = 4 \text{ V}$. Assume $V_{DD} = V_{SS} = 5 \text{ V}$, $R_D = 4.3 \text{ k}\Omega$, and $R_{G2} = 18 \text{ M}\Omega$.

+V _{DD}						
	Vg D	R _{G1} R _{G2} -V _{SS}	R_{D} R_{D} R_{S} R_{S}	R_{out}		
26. The requi a) 300	red value of <i>R</i> _s b) 122.2	(in Ω) is c) 435.5	d) 700	e) 229.4		
27. The result a) 2.84	ting value of $V_{\rm C}$ b) 3.00	_{GS} (in V) is c) 3.32	d) 3.49	e) 2.55		
28. Find the total power dissipated in the DC power supplies, in mW. a) 12 b) 17 c) 20 d) 27 e) 31						
29. If $v_g = 0.01 \cos(\omega t)$ V, then what is the expression of i_0 (in μ A) a) -24.9 $\cos(\omega t)$ b) -15.5 $\cos(\omega t)$ c) -18.4 $\cos(\omega t)$ d) -20.0 $\cos(\omega t)$ e) -23.2 $\cos(\omega t)$						
30. Consider now the effect of channel length modulation by assuming $V_A = 16$ V. What is the value of the output resistance R_{out} (in k Ω)? a) 1.2 b) 1.6 c) 3.4 d) 2.6 e) 2.1						