American University of Beirut

Department of Electrical and Computer Engineering
EECE 310 Electronics
Final Exam - Closed Book 3 hours (180 minutes) Jan. 24, 2012

ALL QUESTIONS ARE GRADED EQUALLY
PENALTY IS 5 TO I
NAME \square ID number $\square \square$
SIGN: I HAVE NEITHER GIVEN NOR RECEIVED AID ON THIS EXAM

Unless otherwise specified, assume that:

- $V_{\mathrm{T}}=25 \mathrm{mV}$
- $\left|V_{\text {BE(ACTIVE) }}\right|=0.7 \mathrm{~V}$
- $\left|V_{\mathrm{BE}(\mathrm{SAT})}\right|=0.7 \mathrm{~V}$
- $\left|V_{\mathrm{CE}(\mathrm{SAT})}\right|=0.2 \mathrm{~V}$
- $\left|V_{\text {CE(EDGE OF SAT) }}\right|=0.3 \mathrm{~V}$
- All capacitors are very large
- Body effect, base-width modulation, and channel-length modulation are negligible

1. In the circuit shown below, diode D 1 has $I_{\mathrm{s} 1}=10^{-16} \mathrm{~A}$ and $n_{1}=1$ while diode D 2 has $I_{\mathrm{s} 2}=10^{-15} \mathrm{~A}$ and $n_{2}=1$. The total current is $I=7.48 \mathrm{~mA}$. Calculate the forward current (in mA) in diode D1.
a) 0.68
b) 0.62
c) 0.54
d) 0.58
e) 0.50
D1

2. In the previous problem, compute the small-signal resistance $r_{d}($ in $\Omega)$ of diode D2.
a) 4.03
b) 3.68
c) 4.31
d) 5.00
e) 4.63
3. In the circuit shown below $R_{1}=R_{L}=180 \Omega$. The two diodes D_{1} and D_{2} are modeled by $V_{\mathrm{D} 0}=0.6 \mathrm{~V}, r_{\mathrm{D}}=10 \Omega$, when conducting, and by an open circuit when OFF. Find the value of the source voltage $v_{s}($ in V$)$ if the output voltage v_{O} is -0.70 V .
a) -4.0
b) -4.8
c) -2.4
d) -3.2
e) -1.6

4. In the bridge rectifier shown below, the RMS value of the sinusoidal voltage v_{S} is 20 V . The diodes are modeled by a short circuit when conducting and by an open circuit when OFF. If the average diode current is 1.3 mA , compute the resistance R (in $k \Omega$).
a) 6.9
b) 6.4
c) 9.0
d) 8.2
e) 7.5

5. The NMOS transistor shown below has $V_{t}=1 \mathrm{~V}$ and $V_{A}=50 \mathrm{~V}$. It is biased to give $V_{G S}=5 \mathrm{~V}$ and $I_{D}=0.5 \mathrm{~mA}$ when $R_{D}=20 \mathrm{k} \Omega$. Find the small-signal output resistance R_{o} (in Ω).
a) 943.7
b) 1787.5
c) 2547.2
d) 3235.3
e) 3862.1

6. The PMOS transistor shown below has $V_{t}=-1 \mathrm{~V}$ and $k_{p}^{\prime} W / L=1 \mathrm{~mA} / \mathrm{V}^{2}$. If the power dissipated in R_{D} is 0.5 mW , find R_{D} (in $\mathrm{k} \Omega$).
a) 3
b) 4
c) 6
d) 5
e) 2

7. A BJT for which the Early voltage is $V_{A}=48 \mathrm{~V}$ operates at $V_{C E}=2 \mathrm{~V}$ and at a collector current of $100 \mu \mathrm{~A}$. Find the value of $V_{C E}($ in V$)$ at which the collector current becomes $115 \mu \mathrm{~A}$. Assume that $V_{B E}$ is positive and remains constant.
a) 14.5
b) 9.5
c) 12
d) 4.5
e) 7

The circuit shown below is used to establish $V_{C E}=3 \mathrm{~V}$ with $V_{C C}=10 \mathrm{~V}$ and $R_{C}=5 \mathrm{k} \Omega$. The BJT used has $\beta=27$.

8. Determine I_{C} (in mA).
a) 0.771
b) 1.54
c) 1.35
d) 1.16
e) 0.964
9. Determine $R_{F}($ in $\mathrm{k} \Omega)$.
a) 120.4
b) 185.5
c) 46
d) 77
e) 22.8
10. The circuit shown below has $R_{C}=0.5 \mathrm{k} \Omega, R_{E}=1.0 \mathrm{k} \Omega, V_{C C}=14 \mathrm{~V}, V_{E E}=-15 \mathrm{~V}$, and $V_{B B}=12 \mathrm{~V}$. Determine the value of $R_{B}($ in $\mathrm{k} \Omega)$ so that the transistor saturates with $\beta_{\text {forced }}=10$.
a) 4.1
b) 4.7
c) 3.1
d) 2.7
e) 3.6

11. The circuit shown below uses a PNP transistor having $\beta=79$. The largest value to which R_{C} can be raised while the transistor remains in the active mode, but at the edge of saturation, is $3 \mathrm{k} \Omega$. Find $R_{E}($ in $\mathrm{k} \Omega)$. Assume $V_{E C(E d g e ~ o f ~ S a t) ~}=0.3 \mathrm{~V}$.
a) 5.4
b) 4.5
c) 1.8
d) 3.6
e) 2.7

The circuit shown below uses a transistor having $\beta=99$. Assume $R_{C}=2 \mathrm{k} \Omega$, $R_{E}=2 \mathrm{k} \Omega$, and $V_{C C}=16 \mathrm{~V}$.

12. Determine $V_{C E}($ in V$)$ if $R_{1}=80 \mathrm{k} \Omega$ and $R_{2}=20 \mathrm{k} \Omega$.
a) 2.2
b) 6.8
c) 4.5
d) 11.4
e) 9.1
13. Determine the ratio I_{C} / I_{B} if $R_{1}=20 \mathrm{k} \Omega$ and $R_{2}=80 \mathrm{k} \Omega$.
a) 2.9
b) 2.3
c) 15.5
d) 6.3
e) 4.0

In the circuit shown below, the transistor has $\beta=50$. It is biased in the active region such that the BJT transconductance $g_{\mathrm{m}}=50 \mathrm{~mA} / \mathrm{V}$. The resistors used are $R_{S}=1 \mathrm{k} \Omega$, $R_{C}=3 \mathrm{k} \Omega$, and $R_{F}=20 \mathrm{k} \Omega$.

14. Determine the base current I_{B} (in $\left.\mu \mathrm{A}\right)$.
a) 45
b) 25
c) 30
d) 35
e) 40
15. Determine the BJT small-signal resistance r_{e} (in Ω) that appears in the T model.
a) 14.0
b) 16.3
c) 19.6
d) 10.9
e) 12.2
16. Determine the small-signal voltage gain $v_{o} / v_{s}($ in $\mathrm{V} / \mathrm{V})$.
a) -6.7
b) -8.2
c) -5.6
d) -15.2
e) -10.7

The circuit shown below has $I=1 \mathrm{~mA}$. The transistor is in the active region and has $\beta=60$.

17. Determine the BJT small-signal resistance $r \pi$ (in $\mathrm{k} \Omega$).
a) 3
b) 2
c) 1
d) 2.5
e) 1.5
18. The amplifier small-signal input resistance R_{i} is $200 \mathrm{k} \Omega$. Find the value of R_{L} (in $\mathrm{k} \Omega$).
a) 4.85
b) 3.25
c) 2.44
d) 1.95
e) 1.63

In the circuit shown below, the BJT has $\beta=80$ and $V_{A}=15 \mathrm{~V}$. The BJT is biased at $V_{C E}=5 \mathrm{~V}$, and $I_{C}=1 \mathrm{~mA}$. Assume that $R_{C}=4.7 \mathrm{k} \Omega$, and that R_{B} is $10 \mathrm{k} \Omega$. $V_{B B}$ and $V_{C C}$ are pure DC sources.

19. A 26 mV peak voltage at the signal source v_{s} results in a 5 mV peak signal at $v_{b e}$. Find the value of $R_{S}($ in $\mathrm{k} \Omega)$.
a) 8
b) 9
c) 5
d) 6
e) 7
20. The small-signal voltage gain $\left(v_{c e} / v_{b e}\right)$ is $-100 \mathrm{~V} / \mathrm{V}$. Find the value of $R_{L}($ in $\mathrm{k} \Omega)$.
a) 4.9
b) 7.3
c) 21.3
d) 10.7
e) 5.8
21. Find the small-signal output current $i_{o u t}$ (in terms of $v_{b e}$) when the load R_{L} is equal to $20 \mathrm{k} \Omega$. $i_{\text {out }} / v_{b e}=$
a) $-0.14 g_{m}$
b) $-0.12 g_{m}$
c) $-0.20 g_{m}$
d) $-0.16 g_{m}$
e) $-0.18 g_{m}$
22. In the circuit shown below, the diode is ideal. The source voltage v_{S} is a square wave with a maximum value of V_{l}, and a minimum value $V_{2}=-10 \mathrm{~V}$. The resulting output is a square wave with a maximum value of V_{X} and a minimum value of V_{Y}. Find the value of $V_{l}($ in V$)$ if the value of the voltage level V_{X} at the output is 7 V and $R_{l}=100 \Omega$.
a) 10
b) 8
c) 9
d) 7
e) 6

23. In the previous problem, find the value of the resistor R_{l} (in Ω), if the value of the voltage level V_{Y} at the output is -3.33 V .
a) 100
b) 400
c) 150
d) 300
e) 200
24. In the circuit shown below, the diode is ideal, and the source voltage is a periodic square wave with levels -10 V (minimum) and 10 V (maximum). The period of the square wave is $T=10 \mathrm{~ms}$, while the time constant is $\tau=R C=4 \mathrm{~ms}$. Assuming that the capacitor is uncharged initially at $t=0$, find the output voltage v_{o} (in V) at time instant $t=7 \mathrm{~ms}$.
Hint: The resistor-capacitor transient equation is $V_{\text {final }}+\left(V_{\text {initial }}-V_{\text {final }}\right) \exp (-t / \tau)$.
a) 7.1
b) 6.3
c) 5.1
d) 5.6
e) 8.1

10 V

25. The noise margins in a MOS inverter are equal to 1.5 V . Find the value of $V_{I H}$ (in V) if the output high voltage $V_{O H}$ is 3.1 V .
a) 1.6
b) 1.7
c) 2.0
d) 1.8
e) 1.9

In the circuit shown below, the MOSFET is characterized by $k_{\mathrm{n}}^{\prime}(W / L)=1 \mathrm{~mA} / \mathrm{V}^{2}$ and $V_{\mathrm{t}}=1 \mathrm{~V}$. We want to design for $I_{\mathrm{D}}=1.2 \mathrm{~mA}$ and $V_{\mathrm{DS}}=4 \mathrm{~V}$. Assume $V_{\mathrm{DD}}=V_{\mathrm{SS}}=5 \mathrm{~V}$, $R_{\mathrm{D}}=4.3 \mathrm{k} \Omega$, and $R_{\mathrm{G} 2}=18 \mathrm{M} \Omega$.

26. The required value of $R_{\mathrm{S}}($ in Ω) is
a) 300
b) 122.2
c) 435.5
d) 700
e) 229.4
27. The resulting value of $V_{\mathrm{GS}}($ in V$)$ is
a) 2.84
b) 3.00
c) 3.32
d) 3.49
e) 2.55
28. Find the total power dissipated in the DC power supplies, in mW .
a) 12
b) 17
c) 20
d) 27
e) 31
29. If $v_{g}=0.01 \cos (\omega t) \mathrm{V}$, then what is the expression of $i_{0}($ in $\mu \mathrm{A})$
a) $-24.9 \cos (\omega t)$
b) $-15.5 \cos (\omega t)$
c) $-18.4 \cos (\omega t)$
d) $-20.0 \cos (\omega t)$
e) $-23.2 \cos (\omega t)$
30. Consider now the effect of channel length modulation by assuming $V_{A}=16 \mathrm{~V}$. What is the value of the output resistance $R_{\text {out }}($ in $\mathrm{k} \Omega)$?
a) 1.2
b) 1.6
c) 3.4
d) 2.6
e) 2.1

