American University of Beirut

Department of Electrical and Computer Engineering

EECE 310 - Electronics
Fall 2011-2012
Homework 1

Problem 1

a) $v_{O}=12-10\left(v_{I}-3\right)^{2}$ for $3<v_{I}<v_{O}+3 V$.

At $v_{I}=3 \mathrm{~V}, v_{O}=12 \mathrm{~V}$.
At $v_{I}=v_{O}+3, v_{O}=12-10 v_{O}^{2}$.
Solving $10 v_{O}^{2}+v_{O}-12=0$ gives $v_{O}=1.047 \mathrm{~V}$ or $v_{O}=-1.147 \mathrm{~V}$.
Since $v_{O}>0 \mathrm{~V}, v_{O}=1.047 \mathrm{~V}$ at $v_{I}=4.047 \mathrm{~V}$.
Thus the saturation levels are $L^{+}=12 \mathrm{~V}$ at $v_{I}=3 \mathrm{~V}$, and $L^{-}=1.047 \mathrm{~V}$ at $v_{I}=4.047 \mathrm{~V}$.

$$
L^{+}=12 \mathrm{~V}
$$

b) $v_{O}=12-10\left(v_{I}-3\right)^{2}$

To obtain $v_{O}=6 \mathrm{~V}$, the required input voltage is:

$$
\begin{gathered}
6=12-10\left(v_{I}-3\right)^{2} \\
\left(v_{I}-3\right)^{2}=0.6
\end{gathered}
$$

Since $v_{I}>3 V, v_{I}=3+\sqrt{0.6}=3.77 V$.
c) $\mathrm{A}_{\mathrm{v}}=\left(d v_{0} / d v_{I}\right) \mid \mathrm{v}_{\mathrm{I}}=3.77$
$d v_{0} / d v_{I}=-20\left(v_{I}-3\right) ;$
$A_{v}=-20(3.77-3)=-15.4 \mathrm{~V} / \mathrm{V}$.
In $\mathrm{dB} A_{v}=20 \log (15.4)=23.75 \mathrm{~dB}$.
d) $v_{I}=V_{I}+V_{i} \cos (\omega t)$

$$
\begin{aligned}
& v_{O}=12-10\left(v_{I}-3\right)^{2}=12-10\left(V_{I}+V_{i} \cos (\omega t)-3\right)^{2} \\
& v_{O}=12-10\left(\left(V_{I}-3\right)^{2}+\left(V_{i} \cos (\omega t)\right)^{2}-2\left(V_{I}-3\right) V_{i} \cos (\omega t)\right) \\
& v_{O}=12-10\left(\left(V_{I}-3\right)^{2}+\left(V_{i}\right)^{2}\left(\frac{1+\cos (2 \omega t)}{2}\right)-2\left(V_{I}-3\right) V_{i} \cos (\omega t)\right) \\
& v_{O}=12-10\left(V_{I}-3\right)^{2}-5\left(V_{i}\right)^{2}-5\left(V_{i}\right)^{2} \cos (2 \omega t)+20\left(V_{I}-3\right) V_{i} \cos (\omega t)
\end{aligned}
$$

DC component= $12-10\left(V_{I}-3\right)^{2}-5\left(V_{i}\right)^{2} ;$ where $V_{I}=3.77 \mathrm{~V}$.

$$
\begin{aligned}
& A_{2}=-5\left(V_{i}\right)^{2} \\
& A_{1}=20\left(V_{I}-3\right) V_{i}
\end{aligned}
$$

$$
\left|\frac{A_{2}}{A_{1}}\right|=\frac{V_{i}}{4\left(V_{I}-3\right)}<0.01 ; \text { so that } V_{i}<0.04\left(V_{I}-3\right)=0.04(3.77-3)=0.0308 \mathrm{~V} \text {. }
$$

Problem 2

a) The output saturation is $\pm 11 \mathrm{~V}$. The peak-to-peak value of the largest sinusoidal wave is 0.5 V . Since the amplifier has linear transfer function $A_{v}=\frac{11-(-11)}{0.5}=44 \mathrm{~V} / \mathrm{V}$, in dB $A_{v}=20 \log (44)=32.87 \mathrm{~dB}$.
b) The output power is $P_{o}=\frac{V_{o r m s}^{2}}{R}=\frac{\left(\frac{11}{\sqrt{2}}\right)^{2}}{32}=1.89 \mathrm{~W}$.
c) The power gain is $A_{p}=\frac{P_{o}}{P_{\text {in }}}=189 \mathrm{~W} / \mathrm{W}$.

In $\mathrm{dB}, A_{p}=10 \log (189)=22.76 \mathrm{~dB}$.

$$
A_{i}=\frac{A_{p}}{A_{v}}=\frac{189}{44}=4.295 \mathrm{~A} / \mathrm{A} . \operatorname{In} \mathrm{dB}, A_{i}=20 \log (4.295)=12.66 \mathrm{~dB} .
$$

d) $\eta=\frac{P_{L}}{P_{d c}} \times 100$

$$
\begin{aligned}
& \mathrm{P}_{\mathrm{dc}}=12.7 * 200+12.7 * 200=5080 \mathrm{~mW} \\
& \eta=\frac{1.89}{5.08} \times 100=37.02 \%
\end{aligned}
$$

