American University of Beirut Department of Electrical and Computer Engineering

EECE 310 - Electronics

Quiz 2 - December 9, 2011

Closed Book - No Programmable Calculators

90 minutes

Penalty is 5 to 1

(1 to 4 wrong answers do not result in a penalty; 5 to 9 wrong answers cancel one correct answer; 10 to 14 wrong answers cancel two correct answers; and so on)

All questions are equally graded.

Name: \qquad ID number: \qquad

1. An amplifier has an open-circuit voltage gain of $10 \mathrm{~V} / \mathrm{V}$, an input resistance of $12 \mathrm{k} \Omega$, and an output resistance of $10 \mathrm{k} \Omega$. Find the amplifier short-circuit transconductance G (in mA / V).
a) 1.5
b) 2.0
c) 2.5
d) 0.5
e) 1.0
2. A transconductance amplifier has an input resistance of $9 \mathrm{k} \Omega$, an output resistance of $1 \mathrm{k} \Omega$, and a short-circuit transconductance of $50 \mathrm{~mA} / \mathrm{V}$. If two of these transconductance amplifiers are cascaded, find the voltage gain (in V/V), from input of first stage to load, when a $4 \mathrm{k} \Omega$ load is connected across the output terminals.
a) 1800
b) 1152
c) 72
d) 288
e) 648
3. A particular MOSFET operating in the saturation region has an output resistance $\left(r_{\mathrm{o}}\right)$ of $50 \mathrm{k} \Omega$ at $I_{\mathrm{D}}=1 \mathrm{~mA}$ and $V_{\mathrm{DS}}=3 \mathrm{~V}$. Find the Early voltage V_{A} (in V) of this MOSFET.
a) 57
b) 37
c) 42
d) 47
e) 52

The drain current of an enhancement N -channel MOSFET is measured at several values of V_{GS} and V_{DS}, as shown in the table below. For this MOSFET, $V_{t}=1 \mathrm{~V}$.

$\boldsymbol{V}_{\mathbf{G S}}(\mathbf{V})$	$\boldsymbol{V}_{\mathbf{D S}}(\mathbf{V})$	$\boldsymbol{I}_{\mathbf{D}}(\boldsymbol{m} \mathbf{A})$
3	3	0.8960
3	4	0.9280
VX	0.2	0.2320

4. Find the value of $\lambda\left(\right.$ in $\left.\mathrm{V}^{-1}\right)$.
a) 0.05
b) 0.04
c) 0.03
d) 0.02
e) 0.01
5. Find the value of $k_{n}^{\prime}(W / L)$ in $\mathrm{mA} / \mathrm{V}^{2}$.
a) 0.56
b) 0.32
c) 0.64
d) 0.40
e) 0.48
6. Find $V x$ (in V).
a) 5.5
b) 4.5
c) 5.0
d) 3.5
e) 4.0
7. For the PMOS transistor in the circuit shown in the figure below, $k_{p}^{\prime}=80 \mu \mathrm{~A} / \mathrm{V}^{2}$, $W / L=2.5, \lambda=0$, and $V_{t}=-1.4 \mathrm{~V}$. Find the voltage V_{GS} (in V) for $I=100 \mu \mathrm{~A}$ and $R=8 \mathrm{k} \Omega$.
a) -2.8
b) -2.4
c) -2.0
d) -2.2
e) -2.6

8. The N -channel enhancement MOSFET has $V_{\mathrm{t}}=1.1 \mathrm{~V}, \lambda=0$, and $k_{n}^{\prime}(W / L)=1 \mathrm{~mA} / \mathrm{V}^{2}$. If $R_{\mathrm{D}}=1.5 \mathrm{k} \Omega$ and the MOSFET operates at the boundary between the triode and saturation regions, find V_{D} (in V).
a) 3.6
b) 3.7
c) 3.8
d) 3.9
e) 4.0
9. Find the value of R_{S} (in $\mathrm{k} \Omega$) in the previous problem.
a) 6.39
b) 8.35
c) 2.59
d) 5.88
e) 3.67

10. An N-channel enhancement MOSFET having $k_{n}^{\prime}(W / L)=1 \mathrm{~mA} / \mathrm{V}^{2}$ is used for small signals as a linear resistance between drain and source whose value is $2 \mathrm{k} \Omega$ when V_{GS} is 1 V . If V_{GS} is increased to 3.5 V , what would the value of this resistance become (in Ω)?
a) 333.3
b) 1000
c) 666.7
d) 500
e) 400

In the circuit shown below, $R_{\mathrm{G}}=10 \mathrm{M} \Omega$, the capacitors are very large, and $\lambda=0$. The transistor is biased in the saturation region such that the gate to source overdrive voltage V_{OV} is 1.8 V .

11. Find the value of the MOSFET transconductance g_{m} (in mA / V) if the current source carries $I=1 \mathrm{~mA}$.
a) 0.91
b) 1.43
c) 1.25
d) 1.11
e) 1.67
12. If the MOSFET transconductance $g_{\mathrm{m}}=1 \mathrm{~mA} / \mathrm{V}$ and the input resistance of the amplifier $v_{\mathrm{i}} / i_{\mathrm{i}}$ was measured to be $1.0 \mathrm{M} \Omega$, find the value of the load resistance R_{L} (in $\mathrm{k} \Omega$).
a) 8.1
b) 11.5
c) 10.1
d) 9.0
e) 7.3
13. Assume that the DC component of v_{GS} is $V_{\mathrm{GS}}=2.8 \mathrm{~V}$ and that the small-signal voltage gain v_{d} / v_{i} of $-8 \mathrm{~V} / \mathrm{V}$. Neglecting distortion, find the largest input signal amplitude $v_{\mathrm{gs}(\text { max })}$ (in mV) such that the MOSFET remains in saturation.
a) 166.7
b) 142.8
c) 125.0
d) 111.1
e) 100.0

In the circuit shown below, the transistor is biased in the saturation region.
The capacitors are very large, $\lambda=0, k_{n}^{\prime}(W / L)=0.5 \mathrm{~mA} / \mathrm{V}^{2}$, $R \mathrm{~A}=R \mathrm{~B}=380 \mathrm{k} \Omega, R \mathrm{sig}=10 \mathrm{k} \Omega, R_{\mathrm{D}}=8 \mathrm{k} \Omega, R_{\mathrm{L}}=12 \mathrm{k} \Omega$, and $R_{\mathrm{S}}=1.4 \mathrm{k} \Omega$.

14. Find the value of the MOSFET transconductance g_{m} (in mA/V) if the transistor is biased such that $I_{D}=1.4 \mathrm{~mA}$.
a) 1.304
b) 1.183
c) 0.707
d) 0.894
e) 1.05
15. If the MOSFET transconductance $g_{\mathrm{m}}=1 \mathrm{~mA} / \mathrm{V}$ and \boldsymbol{v} sig is a 0.2 V peak-to-peak sinusoid, find the peak-to-peak variation of $v g s$ (in mV).
a) 79.2
b) 73.08
c) 86.36
d) 118.75
e) 105.55
16. Assume now that a large capacitor is connected in parallel with R_{S} and that the MOSFET is biased such that $g_{\mathrm{m}}=0.9 \mathrm{~mA} / \mathrm{V}$ and $r_{0}=25 \mathrm{k} \Omega$. Find the small-signal current gain $i_{\mathrm{o}} / i_{\mathrm{i}}$ (in A/A). Note that i_{o} flows in R_{L}, and i_{i} flows in R_{sig}.
a) -31.9
b) -38.3
c) -44.6
d) -51.0
e) -57.4
17. A MOSFET is biased at $V_{\mathrm{OV}}=1 \mathrm{~V}, V_{\mathrm{DS}}=5 \mathrm{~V}$, with $I_{\mathrm{D}}=0.2 \mathrm{~mA}$. Find the resistance value (in $\mathrm{k} \Omega$) that appears between gate and source in the small-signal \boldsymbol{T}-model.
a) 2.5
b) 2.0
c) 1.7
d) 5.0
e) 3.3

In the circuit shown below, the N -channel MOSFET is characterized by $k_{\mathrm{n}}^{\prime}(W / L)=4 \mathrm{~mA} / \mathrm{V}^{2}, V_{\mathrm{tn}}=1 \mathrm{~V}$ and $\lambda=0$. The PMOS transistor is characterized by $k_{\mathrm{p}}^{\prime}(W / L)=2 \mathrm{~mA} / \mathrm{V}^{2}, V_{\mathrm{tp}}=-1 \mathrm{~V}$ and $\lambda=0$.

18. If V_{DD} is large enough for the MOSFETs to conduct, in what region would the MOSFETs be operating?
a) N is TRIODE, P is TRIODE
b) N is SAT, P is TRIODE
c) N is SAT, P is SAT
d) N is TRIODE, P is SAT
e) N is OFF, P is OFF; the MOSFETs cannot conduct for any value of V_{DD}.
19. Given that the voltage V is 4 V , what is the value of I_{D} (in mA)?
a) 2
b) 18
c) 8
d) 50
e) 32
20. If $\mathrm{V}_{\mathrm{DD}}=6 \mathrm{~V}$, what is the voltage $\mathrm{V}($ in V$)$ at the connected gates?
a) 3.49
b) 3.90
c) 4.31
d) 3.07
e) 2.66

