American University of Beirut

Department of Electrical and Computer Engineering

EECE 310 – Electronics Quiz 1 – November 4, 2011 Closed Book – No Programmable Calculators

90 minutes

There are 20 problems. All problems are equally graded.

Penalty is 5 to 1

(1 to 4 wrong answers do not result in a penalty; 5 to 9 wrong answers cancel one correct answer; 10 to 14 wrong answers cancel two correct answers; and so on)

Name: _____ ID number: _____

1. An amplifier operating from ± 15 V power supplies provides a 5 V rms sine-wave signal to a 1 k Ω load and draws negligible current from the signal source. The amplifier draws a current of 3 mA from each of its two power supplies. Find the power dissipated (lost) in the amplifier (in mW).

a) 9	b) 26	c) 41	d) <mark>65</mark>	e) 54	
2. An amplifier has a linear transfer characteristic passing through $(0, 0)$ and with output saturation at 10 V and -10 V. The amplifier gain is 100 V/V. The input voltage consists of a sine-wave component superimposed over a 30 mV DC component. What is the amplitude (in V) of the largest undistorted sine-wave that can appear at the output?					
a) 5	b) 8	c) <mark>7</mark>	d) 6	e) 9	
3. An amplif	fier has the tran	nsfer character	istic $v_O = e^{3(v_I - 1)}$) for $v_I \ge 1$ V and $v_O \le 20$ V. Both	
voltages are expressed in V. If the output voltage at the operating point is 10 V, find the voltage gain (in dB).					
a) <mark>29.5</mark>	b) 31.1	c) 32.5	d) 25.1	e) 27.6	
4. The diodes in the circuit shown below are ideal. Find the forward current in diode D_2 (in mA) if Vcc = 6 V.					

a) 0.26 b) 0.29 c) 0.32 d) 0.35 e) 0.23

In the circuit shown below, the sine-wave input V_i has a *peak-to-peak* value of 48 V. The diode is modeled by a fixed 0.8 V drop when conducting, and by an open circuit when OFF. Refer to this circuit for questions 5 and 6.

5. Find the peak inverse voltage (PIV) of the diode (in V).

a) 30	b) 32	c) 34	d) <mark>36</mark>	e) 38		
6. Find the peak value of the diode current (in mA).						
a) 6.0	b) 2.4	c) 3.3	d) 4.2	e) <mark>5.1</mark>		

7. The diode in the circuit shown below is modeled by a fixed 0.8 V drop when conducting, and by an open circuit when OFF. The square-wave input voltage V_i is -6 V for 50% of the

and by an open circuit when OFF. The square-wave input voltage V_i is -6 V for 50% of the time, and +6 V for 50% of the time. Find the average (DC) value of the output voltage V_o (in V).

8. A diode conducts 0.1 mA at 0.8 V and its voltage changes by 0.060 V for every decade change in current. Find its reverse saturation current I_s (in A).

a) 4.64×10^{-18} b) 3.73×10^{-16} c) 1.75×10^{-14} d) 1.29×10^{-13} e) 5.34×10^{-12}

9. The average (DC) value of the output voltage of a full-wave bridge rectifier is 14 V. If the diodes are ideal and the load is purely resistive, find the RMS value of the sinusoidal supply voltage (in V rms) at the transformer secondary.

a) 15.5 b) 13.3 c) 14.4 d) 11.1 e) 12.2

EECE 310 – Quiz 1 – Fall 2011-2012

10. A half-wave peak rectifier is fed with a sinusoidal voltage source $v_I = V_p \times \sin(2\pi ft)$ V. The diode is ideal, the capacitance $C = 100 \ \mu$ F, and the load resistance $R = 10 \ k\Omega$. If the output ripple voltage should not exceed $0.01 \times V_p$, find the minimum supply frequency f (in Hz).

a) 20 b) 100 c) 50 d) 33.3 e) 25

11. The load resistor in a full-wave bridge rectifier with capacitor filter is 100 Ω . The source is sinusoidal, with 8 V rms, and 50 Hz frequency. Find the ripple voltage (in V) if the capacitance value is 2 mF. Assume that each diode drops 0.65 V when conducting.

a) 0.36 b) 0.50 c) 0.64 d) 0.78 e) 0.92

12. The total voltage across a diode is $v_D = 0.7 + 0.005 \times \sin(\omega t)$ V when the total diode current is $i_D = I_D + 0.05 \times \sin(\omega t)$ mA. The diode has n = 1.8 and negligible reverse saturation current. Find the DC value of the diode current (I_D) in mA.

a) 0.35	b) 0.40	c) <mark>0.45</mark>	d) 0.50	e) 0.3

The circuit shown below must be designed to provide a stabilized voltage for load currents i_L less than or equal to 9 mA when $v_S = 11$ V. The Zener diode has a nominal Zener voltage of 6.2 V at a test current $I_{ZT} = 20$ mA, a resistance $r_Z = 10 \Omega$, and should conduct a current of at least 1 mA to ensure operation in the breakdown region. Refer to this circuit for questions 13 and 14.

13. What is the maximum value of R_X (in Ω) for which the Zener diode remains in the breakdown region?

a) 499 b) 599 c) 399 d) 199 e) 299

14. Assume that $R_X = 190 \ \Omega$. At no-load (R_L is disconnected), find the change in the Zener voltage (in V) if the supply voltage v_S changes by 3 V.

a) 0.15 b) 0.20 c) 0.25 d) 0.05 e) 0.10

15. A circuit consists of a 5 V DC source, a 1 k Ω resistor, and a forward-biased diode. The diode has $I_S = 10^{-12}$ A. Starting with an initial guess for the diode current of 5 mA, the value of the diode current after completing one iteration is found to be 4.1067 mA. Find the value of *n* for this diode.

a) 1.8	b) 1.2	c) 1.4	d) <mark>1.6</mark>	e) 1.0

16. Find the power dissipated in device X (in mW) when R is 1 k Ω . The load line is shown on the plot below.

17. A piece of semiconductor material is doped with donor atoms with a density $N_D = 1.1 \times 10^{17} \text{ cm}^{-3}$. Estimate the resulting hole density (in cm⁻³).

a) 1607 b) 1500 c) 2045 d) 1875 e) 1731

18. Estimate the conductivity (in S/cm) in the previous problem. The electron mobility is $1800 \text{ cm}^2/\text{V.s}$ and is three times that of holes.

a) **31.7** b) 34.6 c) 37.4 d) 40.3 e) 43.2

19. The diffusion current density for electrons in a piece of semiconductor is J_1 at x = 0.1 cm but becomes $0.85 \times J_1$ at x = 0.3 cm. The electron density function is given by $n(x) = a + 3x + bx^3$, where x is in cm, and n is in cm⁻³. Find the value of b (in cm⁻⁶.)

a) -1.84 b) -6.43 c) -5.33 d) -4.19 e) -3.03

20. In the circuit shown below, the three diodes are identical and have $I_S = 10^{-12}$ A, and n = 2. Find the PIV for diode D_1 when $v_S = 8.5 + 10 \sin(\omega t)$ V.

