American University of Beirut

Department of Electrical and Computer Engineering
EECE 310 - Electronics
Fall 2007-2008

Homework 1

Due Tuesday October 9, 2007
1.

An amplifier has the transfer characteristic: $v_{O}=12-8\left(v_{I}-1\right)^{3}$
where v_{O} and v_{I} are in volts. This transfer characteristic applies for $1<v_{I}<v_{O}+1$, and v_{O} positive. At the limits of this region, the amplifier saturates.
a) Sketch and clearly label the transfer characteristic. What are the saturation levels $L+$ and L - and the corresponding values of v_{I} ?
b) Bias the amplifier to obtain a DC output voltage of 7 V . What value of input DC voltage V_{I} is required?
c) Calculate the value of the voltage gain (in V / V and in dB) at the bias point.
d) If a sinusoidal input signal is superimposed on the DC bias voltage V_{I}, that is: $v_{I}=V_{I}+V_{i} \cos (\omega t)$ find the resulting v_{O}. Express v_{O} as the sum of a DC component, a signal component at ω with amplitude A_{1}, and other components at 2ω (with amplitude A_{2}) and at 3ω (with amplitude A_{3}). The components at 2ω and 3ω are undesirable and are the result of the nonlinear transfer characteristic of the amplifier. If it is required to limit the ratio $\frac{\sqrt{A_{2}^{2}+A_{3}^{2}}}{A_{1}}$ to 1%, what is the corresponding upper limit on V_{i} ?

2.

An amplifier operating from +/- 12 V power supplies has a linear transfer characteristic except for output saturation at $+/-10 \mathrm{~V}$.
a) The RMS value of the largest sine wave that can be applied at the amplifier input without output distortion is 0.4 V . Find the amplifier voltage gain in V/V and in dB .
b) What is the corresponding output power for a 50Ω load?
c) What is the power gain, in W/W and in dB , if the input power is 10 mW ? What is the current gain of the amplifier, in A / A and in dB ?
d) What is the amplifier efficiency if the DC current drawn from each supply is 78 mA ?

Problem 1:

a)

- For $v_{\mathrm{I}}=1 \mathrm{~V}$ (lower limit for v_{I}),

We get: $v_{\mathrm{O}}=12-8(1-1)^{3}=12 \mathrm{~V}$
So $L_{+}=12 \mathrm{~V}$

- For $v_{\mathrm{I}}=v_{\mathrm{O}}+1$ (upper limit for $\left.v_{\mathrm{I}}\right)$,

We get: $v_{O}=12-8\left(v_{\mathrm{O}}+1-1\right)^{3}=12-8 v_{\mathrm{O}}{ }^{3}$
$8 v_{\mathrm{O}}^{3}+v_{\mathrm{O}}-12=0$
Since we only want the real root, $v_{\mathrm{O}}=1.1 \mathrm{~V}$
So $L_{-}=1.1 \mathrm{~V}$

b)

To obtain $v_{\mathrm{O}}=7 \mathrm{~V}$,
$7=12-8\left(v_{I}-1\right)^{3}$
$5=8\left(v_{\mathrm{I}}-1\right)^{3}$
So we need $v_{\mathrm{I}}=1.854 \mathrm{~V}$
c)

$$
\mathrm{A}_{\mathrm{v}}=\left(\mathrm{d} v_{\mathrm{o}} / \mathrm{d} v_{\mathrm{I}}\right) \mid \mathrm{vI}^{2}=1.854
$$

$\mathrm{A}_{\mathrm{V}}=-24\left(\mathrm{~V}_{\mathrm{I}}-1\right)^{2}=-24(1.854-1)^{2}=-17.5 \mathrm{~V} / \mathrm{V}$
$\mathrm{A}_{\mathrm{v}}($ in dB $)=20 \log (17.5)=24.86 \mathrm{~dB}$
d)
$v_{\mathrm{O}}=12-8\left(\mathrm{~V}_{\mathrm{I}}+\mathrm{V}_{\mathrm{i}} \cos (\omega \mathrm{t})-1\right)^{3}$
$=12-8\left[\left(\mathrm{~V}_{\mathrm{I}}-1\right)^{3}+3\left(\mathrm{~V}_{\mathrm{I}}-1\right)^{2} \mathrm{~V}_{\mathrm{i}} \cos (\omega \mathrm{t})+3\left(\mathrm{~V}_{\mathrm{I}}-1\right) \mathrm{V}_{\mathrm{i}}{ }^{2} \cos ^{2}(\omega \mathrm{t})+\mathrm{V}_{\mathrm{i}}{ }^{3} \cos ^{3}(\omega \mathrm{t})\right]$
$=12-8\left(\mathrm{~V}_{\mathrm{I}}-1\right)^{3}-24\left(\mathrm{~V}_{\mathrm{I}}-1\right)^{2} \mathrm{~V}_{\mathrm{i}} \cos (\omega \mathrm{t})-24\left(\mathrm{~V}_{\mathrm{I}}-1\right) \mathrm{V}_{\mathrm{i}}^{2}(1+\cos (2 \omega \mathrm{t})) / 2-8 \mathrm{~V}_{\mathrm{i}}^{3}(0.75$
$\cos (\omega \mathrm{t})+0.25 \cos (3 \omega \mathrm{t}))$
$=-12\left(\mathrm{~V}_{\mathrm{I}}-1\right) \mathrm{V}_{\mathrm{i}}^{2}+12-8\left(\mathrm{~V}_{\mathrm{I}}-1\right)^{3}+\left[-24\left(\mathrm{~V}_{\mathrm{I}}-1\right)^{2} \mathrm{~V}_{\mathrm{i}}-6 \mathrm{~V}_{\mathrm{i}}^{3}\right] \cos (\omega \mathrm{t})-12\left(\mathrm{~V}_{\mathrm{I}}-1\right) \mathrm{V}_{\mathrm{i}}^{2}$
$\cos (2 \omega \mathrm{t})-2 \mathrm{~V}_{\mathrm{i}}^{3} \cos (3 \omega \mathrm{t})$
$=-12(0.854) \mathrm{V}_{\mathrm{i}}^{2}+12-8(0.854)^{3}+\left[-24(0.854)^{2} \mathrm{~V}_{\mathrm{i}}-6 \mathrm{~V}_{\mathrm{i}}{ }^{3}\right] \cos (\omega \mathrm{t})-12(0.854) \mathrm{V}_{\mathrm{i}}{ }^{2}$
$\cos (2 \omega \mathrm{t})-2 \mathrm{~V}_{\mathrm{i}}^{3} \cos (3 \omega \mathrm{t})$
$=-10.248 \mathrm{~V}_{\mathrm{i}}^{2}+7.017+\left(-17.5 \mathrm{~V}_{\mathrm{i}}-6 \mathrm{~V}_{\mathrm{i}}^{3}\right) \cos (\omega \mathrm{t})-10.248 \mathrm{~V}_{\mathrm{i}}^{2} \cos (2 \omega \mathrm{t})-$
$2 \mathrm{~V}_{\mathrm{i}}{ }^{3} \cos (3 \omega \mathrm{t})$
$\mathrm{A}_{1}=-\left(17.5 \mathrm{~V}_{\mathrm{i}}+6 \mathrm{~V}_{\mathrm{i}}^{3}\right)$
$\mathrm{A}_{2}=-10.248 \mathrm{~V}_{\mathrm{i}}{ }^{2}$
$\mathrm{A}_{3}=-2 \mathrm{~V}_{\mathrm{i}}{ }^{3}$
DC $=-10.248 \mathrm{~V}_{\mathrm{i}}{ }^{2}+7.017$
$\left[\left(\mathrm{A}_{2}^{2}+\mathrm{A}_{3}^{2}\right)^{1 / 2}\right] / \mathrm{A}_{1}=\left[\left(105.02 \mathrm{~V}_{\mathrm{i}}^{4}+4 \mathrm{~V}_{\mathrm{i}}^{6}\right)^{1 / 2}\right] /-\left(17.5 \mathrm{~V}_{\mathrm{i}}+6 \mathrm{~V}_{\mathrm{i}}^{3}\right) \leq 0.01$
$105.02 \mathrm{~V}_{\mathrm{i}}^{4}+4 \mathrm{~V}_{\mathrm{i}}{ }^{6} \leq 10^{-4}\left(306.25 \mathrm{Vi}^{2}+36 \mathrm{~V}_{\mathrm{i}}{ }^{6}+210 \mathrm{~V}_{\mathrm{i}}^{4}\right)$
Let $\mathrm{X}=\mathrm{V}_{\mathrm{i}}{ }^{2}$
$105.02 \mathrm{X}^{2}+4 \mathrm{X}^{3} \leq 10^{-4}\left(306.25 \mathrm{X}+36 \mathrm{X}^{3}+210 \mathrm{X}^{2}\right)$
$3.9964 X^{3}+105 X^{2}-0.0306 X=0$
$\mathrm{X}=\mathrm{V}_{\mathrm{i}}{ }^{2}=2.9 \times 10^{-4}$
$\mathrm{V}_{\mathrm{i}} \leq 1.7 \times 10^{-2}$
$\mathrm{V}_{\mathrm{i}} \leq 0.017 \mathrm{~V}$
$\mathrm{V}_{\mathrm{i}} \leq 17 \mathrm{mV}$

Problem 2:
a)

Given $\mathrm{V}_{\text {Irms }}=0.4 \mathrm{~V}$
$\mathrm{V}_{\text {Orms }}=10 / \sqrt{ } 2 \mathrm{~V}$
$A v=V_{\text {Orms }} / V_{\text {Irms }}$
$=10 /(\sqrt{ } 2 \times 0.4)$
$=17.67 \mathrm{~V} / \mathrm{V}$
$\mathrm{A}_{\mathrm{v}}($ in dB$)=20 \log 17.67=24.94 \mathrm{~dB}$
b)

$$
\begin{aligned}
& \mathrm{P}_{\mathrm{L}}=\mathrm{V}^{2}{ }_{\text {Orms }} / \mathrm{R} \\
& =50 / 50 \\
& =1 \mathrm{~W}
\end{aligned}
$$

c)
given $\mathrm{P}_{\mathrm{I}}=10 \mathrm{~mW}$
$A_{P}=P_{L} / P_{I}$
$=1 / 10 \times 10^{-3}$
$=100 \mathrm{~W} / \mathrm{W}$
$\mathrm{A}_{\mathrm{P}}($ in dB$)=10 \log 100=20 \mathrm{~dB}$
$\mathrm{A}_{\mathrm{P}}=\mathrm{A}_{\mathrm{v}} \cdot \mathrm{A}_{\mathrm{i}}=>\mathrm{A}_{\mathrm{i}}=\mathrm{A}_{\mathrm{P}} / \mathrm{A}_{\mathrm{v}}=100 / 17.67=5.65 \mathrm{~A} / \mathrm{A}$
$A_{i}($ in dB$)=20 \log 5.65=15.05 \mathrm{~dB}$
d)
$\eta=\left(P_{L} / P_{d c}\right) \times 100$
$\mathrm{P}_{\mathrm{dc}}=78 \times 12+78 \times 12=1872 \mathrm{~mW}$
So $\eta=(1000 / 1872) \times 100=53.41 \%$

