American University of Beirut DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

EECE 310 – Electronics

Fall 2007 - 2008

Homework 3

1. Consider the waveform shown below.

The waveform is superimposed on a 9 V DC source, and applied to a circuit consisting of a 1 K Ω resistor and a (conducting) diode. Find the value of V_{max} for which small-signal analysis is applicable, if the variation in the diode voltage is limited to +/- 10 mV. Assume that the diode drops a voltage of 0.7 V when conducting, and that n = 1.7. Provide a plot of the *total* diode current, as derived from DC and small-signal analyses.

2. Repeat Problem 2, parts (a) and (b) in Homework 2 using the following model for the conducting diodes: $V_{D0} = 0.68 \text{ V}$, $r_D = 30 \Omega$.

3. Design a Zener voltage regulator to provide a regulated voltage of around 9 V. The available 9.1 V, $\frac{1}{2}$ W Zener is specified to have a drop of 9.1 V at a test current of 16 mA. At this value of current r_Z is specified to be 6.25 Ω . The value of I_{ZK} for the Zener diode is 3 mA. The unregulated supply varies between 12 V and 15 V. The regulator is required to supply a load that dissipates 10 to 300 mW at 9 V.

- a. Find V_{Z0} for the Zener diode.
- b. Calculate the range of values for the resistor *R* in the circuit.
- c. Using a value of *R* that is close, to the nearest *standard resistor value*, to the upper range:
 - i. Find the change in load voltage that corresponds to the 12-to-15 V variation in the unregulated supply voltage. Assume that the load current is constant.
 - ii. Find the change in load voltage that corresponds to the full change in load current. Assume that the supply voltage is fixed.
 - iii. What is the maximum current that the Zener diode should be able to conduct? What is the Zener power dissipation under this condition?

$$Y = Y_{s} \cdot \frac{Q}{R+Q}$$

max $\Delta V_{A} = 20mV$ \Rightarrow more $\Delta V_{S} = \Delta V_{A} \frac{(R+f_{A})}{f_{A}}$ \Rightarrow more $\Delta V_{S} = \Delta V_{A} \frac{(R+f_{A})}{f_{A}}$ \Rightarrow more $\Delta V_{S} = \Delta O \frac{(1000+5.12)}{5.12}$ = 3.526V. $V_{S} more = \Delta V_{S} \frac{max}{2} = V_{S} peak = 1.563V.$

$$= 6 - (-3) = 10 (l_{02}) + 0.68 + 0.03 l_{02} + 9 l_{02}$$

$$\Rightarrow l_{02} = \frac{14.32}{15.03} = 0.953 \text{ mA.}$$

$$V_{02} = 0.768 + 0.03 \times l_{02} = 0.708 \text{ V}$$

$$l_{01} = 0.68 + 0.03 l_{02} + 5 l_{02} - 9 = -3.53 \text{ V}$$

$$0^{2} = 0.1 (0 \text{ mA}, -3.52 \text{ V})$$

$$D_{2} (0.953 \text{ mA}, 0.708 \text{ V})$$

(3)

b) Assume O1 & Da conduct.

$$N_{min} = \frac{V_{source min} - V_{20} - r_2 F_2 K_2}{i_{2}K_2 + i_{1} mex} = \frac{13 - 9 - 6.35(3.10^3)}{3.10^3 + 32.36 \times 10^3} = 8d_0 9J$$

$$SA.9n \leq R \leq 101 \cdot n$$
() $V_{source} - R_{load} - R_{1} = 0$
 $V_{aod} = R_2 = 3 + 6.35(i_2)$
 $V_{bource} - J - 6.35i_2 - 100 i_2 - 100 i_2 = 0$

$$\Rightarrow \Delta i_2 = \frac{\Delta V_{source}}{1.66.25} = 38.2 \text{ mA}$$

$$N_z = \Delta V_{aod} = 6.35 \Delta i_2 = 126.5 \text{ mA} \Rightarrow V_{aod} \text{ vertice } b_3 \pm 38.3 \text{ mV}$$
(ii) $V_{source} - S_{bod} - R_{12} = 0$
 $V_{aod} = 3 + 6.35 \Delta i_2 = 126.5 \text{ mA} \Rightarrow V_{aod} \text{ vertice } b_3 \pm 38.3 \text{ mV}$
(iii) $V_{source} = constant$
 $V_{bod} = G_{25} \Delta V_{bod} - R\Delta i_2 = 0$
 $ad D M_{cod} = 6.35 \Delta i_2$
 $\Rightarrow -\Delta V_{aod} - R_{12} + i_{2} = 0$
 $A V_{cod} = 6.45 \Delta i_2$
 $ad D M_{cod} = -\Delta V_{bod} - R\Delta i_2 - R\Delta i_1 = 0$
 $V_{aod} = -\Delta V_{bod} - R\Delta i_2$
 $\Rightarrow -\Delta V_{bod} = -\frac{R}{6.35} \Delta V_{bod} - R\Delta i_1 = 0$
 $A V_{bod} = -\frac{R}{6.35} \Delta V_{bod} - R\Delta i_1 = 0$
 $A V_{bod} = -\frac{R}{6.35} \Delta V_{bod} - R\Delta i_1 = 0$
 $A V_{bod} = -\frac{R}{6.35} \Delta V_{bod} - R\Delta i_1 = 0$
 $V_{bod} = V_{bod} - \frac{R}{6.35} \Delta V_{bod} - R\Delta i_1 = 0$
 $V_{bod} = V_{bod} - \frac{R}{6.35} \Delta V_{bod} - R\Delta i_1 = 0$
 $V_{bod} = V_{bod} - \frac{R}{6.35} \Delta V_{bod} - R\Delta i_1 = 0$
 $V_{bod} = V_{bod} - \frac{R}{6.35} \Delta V_{bod} - R\Delta i_1 = 0$
 $V_{bod} = V_{bod} - \frac{R}{6.35} \Delta V_{bod} - R\Delta i_1 = 0$
 $V_{bod} = V_{bod} - \frac{R}{6.35} \Delta V_{bod} - R\Delta i_1 = 0$
 $V_{bod} = V_{bod} - \frac{R}{6.35} \Delta V_{bod} - R\Delta i_1 = 0$
 $V_{bod} = V_{bod} - \frac{R}{6.35} \Delta V_{bod} - R\Delta i_1 = 0$
 $V_{bod} = V_{bod} - \frac{R}{6.35} \Delta V_{bod} - R\Delta i_1 = 0$
 $V_{bod} = V_{bod} - \frac{R}{6.35} \Delta V_{bod} - R\Delta V_{bod} - \frac{R}{6.35} \Delta V_{bo$

(4)

(11) Vload max =
$$9.1 \pm \frac{4}{3}$$
 dueto $i_{1} \pm \frac{4}{3}$ dueto Visource
= $9.1 \pm 88_{2}2$ x10³ $\pm 93.7 \times 10^{3}$
= $9.282.7 \times 10^{3}$
 $i_{2} = \frac{V_{load} - V_{20}}{V_{2}}$
 $i_{2} = \frac{V_{load} - V_{20}}{V_{2}}$
 $i_{2} = \frac{V_{load} - V_{20}}{V_{2}}$
 $i_{2} = \frac{V_{load} - V_{20}}{V_{2}}$

Powerdissipation at izmose = P = izmose. Vzmose = .45. 1x103 x 4.283= 0.41W <0.5

è

