American University of Beirut

Department of Electrical and Computer Engineering
EECE 310 - Electronics
Fall 2007-2008

Homework 9

Consider a CMOS inverter with the following circuit parameters:
The N-channel MOSFET has $L=0.5 \mu \mathrm{~m}, W=2 \mu \mathrm{~m}, V_{\mathrm{t}}=0.7 \mathrm{~V}$, and $k^{\prime}=200 \mu \mathrm{~A} / \mathrm{V}^{2}$.
The P-channel MOSFET has $L=0.5 \mu \mathrm{~m}, W=5 \mu \mathrm{~m}, V_{\mathrm{t}}=-0.8 \mathrm{~V}$, and $k^{\prime}=120 \mu \mathrm{~A} / \mathrm{V}^{2}$.
The supply voltage is $V_{\mathrm{DD}}=2.5 \mathrm{~V}$.
a) Find the values of V_{OL} and V_{OH} for this inverter.
b) Find the value of $V_{\text {OL }}$ when a $1 \mathrm{~K} \Omega$ resistor is connected from the output to V_{DD}. The input is at V_{DD}. What is the total circuit power dissipation?
c) Find the value of V_{OH} when a $1 \mathrm{~K} \Omega$ resistor is connected from the output to ground. The input is at 0 V . What is the total circuit power dissipation?
d) Find the values of V_{IL} and V_{IH}. Calculate the noise margins.
e) Find the values of V_{IL} and V_{IH} when channel length modulation is not negligible. Assume in this part that $\lambda_{\mathrm{n}}=0.2 \mathrm{~V}^{-1}$ and $\left|\lambda_{\mathrm{p}}\right|=0.15 \mathrm{~V}^{-1}$.
f) A 0.1 pF capacitor is now connected from output to ground.

1. The input switches from 0 to V_{DD} at $t=0$. Find the time instant at which the output reaches $0.2 V_{\mathrm{DD}}$.
2. The input switches back to 0 at $t=1 \mu \mathrm{sec}$. Find the time instant at which the output reaches $0.8 V_{\mathrm{DD}}$.

$$
\begin{gathered}
V_{G S P}=V_{I}-V_{O D} \\
V_{D S P}=V_{0}-V_{D D} \\
V_{G S_{n}}=V_{I} \\
V_{D S_{n}}=V_{0}
\end{gathered}
$$

$I_{D P}=O_{m A} \Rightarrow P_{m o s}$ in linear region $\Rightarrow 0=\frac{1}{2} k_{p}\left(\frac{w}{L}\right)_{p}\left(a\left(V_{a s p}-V_{t_{p}}\right) V_{D s_{p}}-V_{D s_{p}}^{2}\right)$
$\Rightarrow V_{D S P}=O V \quad \Rightarrow V_{O}-V_{O D}=0 \quad \Rightarrow V_{O}=V_{O D}=3 V$.
$\therefore V_{O H}=V_{D O}=2.5 \mathrm{~V}$

For $V_{I}=V_{D D} \Rightarrow V_{Q s p}=O V \Rightarrow V_{G S p}>V_{L p} \Rightarrow P_{m o s}$ is off $\Rightarrow I_{D P}=I_{D_{A}}=O m A$
$I_{O_{n}}=O_{m A} \Rightarrow N m o s ~$ in linear region $\Rightarrow 0=\frac{1}{2} K_{n}\left(\frac{W}{L}\right)_{n}\left(2\left(V_{a S_{n} n}-V_{4 n}\right) V_{n S_{n}}-V_{0 S_{n}}^{2}\right)$
$\Rightarrow V_{O S_{n}}=O V \Rightarrow V_{0}=O V$
$\therefore V_{O L}=O V$
b)

. For $V_{I}=V_{O D} \Rightarrow V_{G S P}=O V \Rightarrow P_{m o s}$ is off $\Rightarrow I_{D P}=0 \mathrm{~mA}$.

- $I_{O n}=\frac{V_{O D}-V_{O L}}{1 . K R} \quad ; V_{a S_{n}}=3.5 \mathrm{~V} ; V_{\text {AL }}=8 m a l l \Rightarrow$ mos cnlinearregion
$\frac{1}{2} K_{n}^{\prime}\left(\frac{W}{L}\right)_{n}\left(2\left(V_{G S_{B}}-V_{L_{A}}\right) V_{O L}-V_{O L}^{2}\right)=\frac{V_{O O}-V_{O L}}{1 K} \Rightarrow \frac{1}{2} \times 200 \mu \times \frac{2}{0.5}\left(2(2.5-0 . J) V_{O L}-V_{O L}^{2}\right)=2.5 \mathrm{~m}-\frac{V_{O L}}{1 K}$
$\Rightarrow 0.4 \times 2 \times(1.8) V_{O L}-0.4 V_{O L}^{2}=2.5-V_{O L} \Rightarrow 0.4 V_{O L}^{2}-3.44 V_{O L}+2.5=0 \Rightarrow V_{O L}=1.3 \mathrm{~V}$

$$
\begin{aligned}
\text { Total power dissipation } & =V_{D D} \times \text { current in } V_{D D}=V_{D D} \times\left(I_{\text {in }}+I_{D P}+I_{D A}\right)=V_{D D} \times I_{D n} \\
& =V_{D D}\left(\frac{V_{D D}-V_{O L}}{1 K}\right)=\frac{V_{D D}(2.5-1.3)}{1 \mathrm{~K}}=3 \mathrm{~mW}
\end{aligned}
$$

For $V_{I}=0 \Rightarrow V_{\operatorname{as}_{n}}<V_{t_{n}} \Rightarrow N M_{0}$ is ff $\Rightarrow I_{D_{n}}=O m A ; P_{m o s}$ in linear region . $I_{D_{P}}=\frac{V_{O H}}{I K}$

$$
\frac{1}{2} K_{P}^{\prime}\left(\frac{W}{L}\right)_{p}\left(2\left(V_{G S P}-V_{+p}\right)\left(V_{\text {OH }}-2.5\right)-\left(V_{\text {OH }}-2.5\right)^{2}\right)=\frac{V_{\text {OH }}}{V_{K}}
$$

$$
\frac{1}{2} 120 \mu \frac{5}{0.5}\left(2(-2.5+0.8)\left(V_{0 M}-2.5\right)-\left(V_{0 H}-2.5\right)^{2}\right)=\frac{V_{\text {OH }}}{1 K}
$$

1.2 $(-1.7)\left(V_{\text {OH }}-2.5\right)-0.6\left(V_{\text {OM }}-2.5\right)^{2}=V_{\text {OH }}$
$-2.04 \mathrm{~V}_{\text {OH }}+5.1-0.6 \mathrm{~V}_{\text {OH }}^{2}+3 \mathrm{~V}_{\text {OH }}-3.75=\mathrm{V}_{\text {OH }}$
$\Rightarrow 0.6 \mathrm{~V}_{\mathrm{OH}}^{2}+0.04 \mathrm{~V}_{\mathrm{OH}}-1.35=0$
$\Rightarrow V_{O H}=1.47 \mathrm{~V}$.
Total power dissipated in the circuit $=\underset{\substack{\text { power in } \\ \text { supplied }}}{\operatorname{Pon} \text { source }}=V_{D D} \times I=V_{D D} \times I_{D_{P}}$

$$
=2.5 \times \frac{1.47}{1 \mathrm{k}}=3.675 \mathrm{~mW}
$$

d) For $V_{I L}$: Pos is in linear region and N mos in SAT.

$$
\begin{align*}
& \Rightarrow \frac{1}{2} K_{n}^{\prime}\left(\frac{W}{L}\right)_{n}\left(V_{G S_{n}}-V_{L A}\right)^{2}=\frac{1}{2} K_{P}\left(\frac{W}{L}\right)_{P}\left(2\left(V_{G S_{P}}-V_{L_{P}}\right)\left(V_{0 S_{P}}\right)-V_{0 S_{P}}^{2}\right) \\
& \Rightarrow 200 \times 2\left(V_{I L}-0.7\right)^{2}=120 \times 5\left(2\left(V_{I L}-2.5+0.8\right)\left(V_{0}-2.5\right)-\left(V_{0}-2.5\right)^{2}\right) \\
& \Rightarrow 2\left(V_{T L}-0.7\right)^{2}=3\left(2\left(V_{I L}-1.7\right)\left(V_{0}-2.5\right)-\left(V_{0}-2.5\right)^{2}\right) \cdots \text { (1) } \tag{1}
\end{align*}
$$

For $V_{I L}: \left.\frac{d v_{0}}{d v_{I}} \right\rvert\,=-1 \quad \sum$ take derivative with respect to 'd v_{I}
$\Rightarrow 4\left(V_{I L}-0.7\right)=6\left(V_{0}-2.5\right)+6\left(V_{I L}-1.7\right)\left(\frac{d V_{0}}{d V_{I}}\right)-6 \frac{d V_{0}}{d V_{I}}\left(V_{0}-2.5\right)$
$\Rightarrow 4 \mathrm{~V}_{\mathrm{IL}}-2.8=6 \mathrm{~V}_{0}-15-6 \mathrm{~V}_{\mathrm{IL}}+10.2+6 \mathrm{~V}_{0}-15$
$\Rightarrow 10 V_{I L}=12 V_{0}-17 \Rightarrow V_{0}=\frac{10}{12} V_{I_{L}}+\frac{17}{12} \ldots$ (2)

$$
\begin{align*}
& \text { Replace equation } 2 \text { in } 1 \\
& \Rightarrow 2\left(v_{\text {xL }}-0.7\right)^{2}=6\left(v_{5 L}-1.7\right)\left(\frac{5}{6} v_{\text {IL }}+\frac{17}{12}-2.5\right)-3\left(\frac{5}{6} v_{\text {IL }}+\frac{17}{12}-2.5\right)^{2} \\
& \Rightarrow \frac{11}{12} V_{I L}^{2}-\frac{4077}{60} V_{\mathrm{IL}}+\frac{7853}{1200}=0 \\
& \Rightarrow V_{\text {IL }}=1.14 \mathrm{~V} \\
& N M L=V_{\mathrm{IL}}-V_{\text {gL }}=1.24 \mathrm{~V} \\
& \text { For } V_{I H} \Rightarrow P M \text { os in SAT and } N \text { mos in linear region } \\
& \Rightarrow \frac{1}{2} K_{n}^{\prime}\left(\frac{W}{L}\right)_{n}\left(2\left(V_{\text {SS }}^{n}-V_{t_{n}}\right)\left(V_{D S_{n}}\right)-V_{D S_{n}}^{2}\right)=\frac{1}{2} K_{p}^{\prime}\left(\frac{W}{L}\right)_{p}\left(V_{G S_{p}}-V_{t p}\right)^{2} \\
& \Rightarrow 200 \times 2\left(2\left(V_{54}-0.7\right)\left(V_{0}\right)-v_{0}^{2}\right)=120 \times 5\left(V_{34}-2.5+0.8\right)^{2} \\
& \Rightarrow 4\left(v_{I H}-0.7\right)\left(v_{0}\right)-2 v_{0}^{2}=3\left(v_{I H}-1.7\right)^{2} \ldots . . \text { (1) } \\
& \left.\frac{d V_{0}}{d v_{I}}\right|_{V_{I}=v_{I H}}=-1 \\
& \Rightarrow 4 V_{0}+4\left(V_{I H}-0.7\right) \frac{d V_{0}}{d V_{I}}-4 \frac{d V_{0}}{d V_{I}} V_{0}=6\left(V_{I H}-1.7\right) \\
& \Rightarrow 4 V_{0}-4 V_{I H}+2.8+4 V_{0}=6 V_{I H}-10.2 \\
& \Rightarrow 8 V_{0}=10 V_{\text {In }}-13 \ldots \\
& \Rightarrow V_{0}=\frac{5}{4} V_{I_{H}}-\frac{13}{8} \cdots \text { (2) } \\
& \text { Replace equation } 2 \text { in } 1 \\
& \Rightarrow 4\left(V_{I H}-0.7\right)\left(\frac{5}{4} v_{T H}-\frac{13}{8}\right)-2\left(\frac{5}{4} V_{T H}-\frac{13}{8}\right)^{2}=3\left(v_{I M}-1.7\right)^{2} \\
& \Rightarrow \frac{9}{8} v_{I H}^{2}-\frac{333}{40} v_{1 H}+\frac{7521}{800}=0 \\
& \Rightarrow V_{2 H}=1.39 \mathrm{~V} \\
& N M H=V_{\text {OH }}-V_{\text {In }}=1.11 \mathrm{~V} \\
& \text { c) For } V_{I L} \text { : Pms in linear region, } N_{m o s} \text { in } \delta A T \\
& \Rightarrow \frac{1}{2} k_{n}^{\prime}\left(\frac{w}{L}\right)_{n}\left(v_{a S_{n}}-v_{\text {th }}\right)^{2}\left(1+\ln _{n} v_{D S_{n}}\right)=\frac{1}{2} k_{p}^{\prime}\left(\frac{w}{L}\right)_{p}\left(2\left(v_{G S_{p}}-V_{L p}\right) V_{D S_{p}}-v_{D S_{p}}^{2}\right) \\
& \Rightarrow 2\left(v_{\text {IL }}-0.7\right)^{2}\left(1+0.2 v_{0}\right)=3\left(2\left(v_{I L}-2.5+0.8\right)\left(v_{0}-2.5\right)-\left(v_{0}-2.5\right)^{2}\right) \\
& \Rightarrow 2\left(v_{I L}-0.7\right)^{2}\left(1+0.2 V_{0}\right)=6\left(v_{I L}-1.7\right)\left(v_{0}-2.5\right)-3\left(v_{0}-2.5\right)^{2} \tag{1}\\
& \left.\frac{d V_{0}}{d V_{I}}\right|_{V_{1}=V_{I L}}=-1 \\
& \Rightarrow 4\left(v_{I L}-0.7\right)\left(1+0.2 v_{0}\right)+2\left(v_{I L}-0.7\right)^{2}\left(0.2 \frac{d v_{0}}{d v_{I}}\right)=6\left(v_{0}-2.5\right)+6\left(v_{I L}-1.7\right) \frac{d V_{0}}{d v_{I}}-6 \frac{d v_{0}}{d v_{I}}\left(v_{0}-2.5\right)
\end{align*}
$$

$$
\begin{align*}
& \Rightarrow 4\left(V_{I L}-0.7\right)+0.8 V_{0}\left(V_{I L}-0.7\right)-0.4\left(V_{I L}-0.7\right)^{2}=6 V_{0}-15-6\left(V_{I L}-1.7\right)+6 V_{0}-15 \\
& \Rightarrow 4\left(V_{I L}-0.7\right)\left(1-0.1\left(V_{I L}-0.7\right)\right)+30+6\left(V_{I L}-1.7\right)=\left(12+0.8\left(V_{I L}-0.7\right)\right) V_{0} \\
& \Rightarrow 4 V_{I L}-2.8-0.4 V_{I L}^{2}+0.56 V_{I L}-0.196+6 V_{I L}-10.2+30=\left(0.8 V_{I L}+11.44\right) V_{0} \\
& \Rightarrow \frac{-0.4 V_{I L}^{2}+10.56 V_{I L}+16.804}{0.8 V_{I L}+11.44}=V_{0} \ldots 2 \tag{2}
\end{align*}
$$

Replace (2) in (1) :

$$
\begin{aligned}
2\left(V_{I L}-0.7\right)^{2}\left(1+0.2 \cdot \frac{\left(-0.4 V_{I L}^{2}+10.56 V_{I L}+16.804\right)}{0.8 V_{I L}+11.44}\right)= & 6\left(V_{I L}-1.7\right)\left(\frac{-0.4 V_{I L}^{2}+10.56 V_{I L}+16.804}{0.8 V_{I L}+11.44}-2.5\right) \\
& -3\left(\frac{-0.4 v_{I L}^{2}+10.56 V_{I L}+16.804}{0.8 V_{I L}+11.44}-2.5\right)^{2}
\end{aligned}
$$

$$
\Rightarrow 20 V_{I L}^{5}-845 V_{I L}^{4}-7632 V_{I L}^{3}+7192.9 V_{I L}^{2}-105715.69 V_{I L}+123918.7611=0
$$

$$
V_{I L}=1.1404 \mathrm{~V}
$$

$$
\text { For } V_{T H} \text { : Pmos in SAT, Nmosinlinear }
$$

$$
\left.\frac{1}{2} K_{n}^{\prime}\left(\frac{w}{L}\right)_{n}\left(\lambda\left(V_{G S_{n}}-V_{t n}\right) V_{D S_{n}}-V_{D S_{n}}^{2}\right)\right)=\frac{1}{2} K_{p}^{\prime}\left(\frac{w}{L}\right)_{n}\left(V_{G S_{p}}-V_{t p}\right)^{2}\left(1+\lambda_{p} V_{D s_{p}}\right)
$$

$$
4\left(v_{I H}-0.7\right) V_{0}-2 V_{0}^{2}=3\left(V_{J_{n}}-1.7\right)^{2}\left(1.375-0.15 V_{0}\right) \ldots(1)
$$

$$
\left.\frac{d v_{0}}{d v_{I}}\right|_{v_{1}=v_{34}}=-1
$$

$$
4 V_{0}+4\left(V_{I 4}-0.7\right) \frac{d V_{0}}{d V_{I}}-4 V_{0} \frac{d V_{0}}{d V_{I}}=6\left(V_{I H}-1.7\right)\left(1.375-0.15 V_{0}\right)+3\left(v_{I H}-1.7\right)^{2}\left(-0.15 \frac{d v_{0}}{d v_{2}}\right)
$$

$$
\Rightarrow 4 V_{0}-4 V_{I H}+2.8+4 V_{0}=8.25 V_{I H}-14.025-0.9\left(V_{J H}-1.7\right) V_{0}+0.45\left(v_{5 H}-1.7\right)^{2}
$$

$$
\Rightarrow V_{0}\left(8+0.9\left(v_{5 H}-1.7\right)\right)=4 v_{1 H}+8.25 V_{J H}-1.53 V_{t H}+0.45 V_{S H}^{2}-16.825+1.3005
$$

$$
\begin{equation*}
\Rightarrow V_{0}=\frac{0.45 V_{I H}^{2}+10.72 V_{I H}-15.5245}{0.9 V_{I H}+6.47} \tag{2}
\end{equation*}
$$

Replace (2) in (1)

$$
\begin{aligned}
& 4\left(v_{I H}-0.7\right)\left(\frac{0.49 J_{I H}^{2}+10.72 v_{J H}+5.5245}{0.9 v_{J H}+6.47}\right)-2\left(\frac{0.45 v_{I H}^{2}+10.72 v_{I H}-15.5245}{0.9 v_{I H}+6.47}\right)=3\left(v_{I H}+1.7\right)^{2}\left(1.375-0.5 V_{0}\right) \\
\Rightarrow & 729 v_{J H}^{5}+11623.5 v_{I H}^{4}-2547.9 v_{I H}^{3}-592472.97 V_{J H}^{2}+3131229.9645 v_{I H}-3321757.61553=0 \\
\Rightarrow & V_{I H}=1.436 \mathrm{~V} .
\end{aligned}
$$

f) 1- V_{I} switches from 0 to $V_{D D}$

$$
\begin{aligned}
& \Rightarrow \text { now } V_{I}=V_{O D} \Rightarrow \text { POos is off } \Rightarrow i_{D P}=0 \Rightarrow i_{D N}=-i_{C} \Rightarrow i_{O N}=-C \frac{d V_{O}}{d t} \\
& V_{G S_{n}}=V_{I}=2.5
\end{aligned}
$$

$$
V_{D \delta_{a}}=V_{0}
$$

$$
\Rightarrow \text { For } V_{0}>2.5-0 \lambda \Rightarrow \text { Nmouin SAT }
$$

$$
\text { For } v_{0}<2.5-0.7 \Rightarrow N_{m o s} \text { in linear region }
$$

$$
i_{D N}=-\frac{c d v_{0}}{d t} \Rightarrow d t=-\frac{c d v_{0}}{i_{D N}} \Rightarrow \Delta t=-c \int \frac{d v_{0}}{i_{0 N}} ; \Delta t=t_{1}-t=t_{1}-0=t_{1}
$$

$$
=\frac{C}{\frac{1}{2} k_{0}\left(\frac{w}{2}\right)_{n}}\left[\int_{1.8}^{2.5} \frac{d v_{0}}{(1.8)^{2}}+\int_{0.5}^{1.8} \frac{d v_{0}}{3.6 v_{0}-v_{0}^{4}}\right]
$$

$$
\left.=\frac{0.1 \times 10^{-12}}{100 \times 10^{-6} \times \frac{2}{0.5}}\left[\frac{(2.5-1.8)}{(1.8)^{2}}+\frac{5}{18} \ln \left(\frac{V_{0}}{5 V_{0}-18}\right)\right]_{0.5}^{1.8}\right]
$$

$$
=2.5 \times 10^{-10}\left[\frac{0.7}{1.8^{2}}+\frac{5}{18} \ln (0.2)-\frac{5}{18} \ln \left(\frac{1}{31}\right)\right]
$$

$$
=0.18 \mathrm{nsec} .
$$

2. $\begin{aligned} & V_{1}=0 \Rightarrow \text { Nos become off } \Rightarrow i_{D V}=0 \Rightarrow i_{D O}=i_{C} \Rightarrow i_{O_{P}}=c \frac{d V_{0}}{d t} \\ & V_{O S P}=V_{D O}+V_{I}=V_{I} \cdot V_{D D}\end{aligned}$

$$
v_{D s_{p}}=v_{o}-v_{o D}
$$

$$
\text { For } V_{0}-V_{O D}<V_{I}-V_{O O}-V_{4 P} \Rightarrow V_{0}<0.8 \Rightarrow P_{\operatorname{masin}} S_{A T}
$$

$$
\text { For } V_{O}-V_{D D}>V_{I}-V_{D D}-V_{4 P} \Rightarrow V_{0}>0.8 \Rightarrow P_{\text {mos in }} \text { linear region }
$$

$$
\begin{gathered}
i_{D_{p}}=+\frac{c d v_{0}}{d_{t}} \\
0.8
\end{gathered} \Rightarrow d t=\frac{c d v_{0}}{i_{D_{p}}} \Rightarrow \Delta t=c \int_{0.8}^{\frac{d v_{0}}{L_{D_{p}}}} \quad ; \Delta t=t_{2}-t_{1} \Rightarrow t_{\mathrm{a}}=\Delta t+i \mu \mathrm{sec} .
$$

$$
\begin{aligned}
\Delta t & =\frac{C}{\frac{1}{2} x_{0}\left(\frac{v}{2}\right)_{p}}\left[\int_{0}^{0.8} \frac{d v_{0}}{(-1.7)^{2}}+\int_{0.8}^{2} \frac{d v_{0}}{-3.4\left(v_{0}-2.5\right)-\left(v_{0}-2.5\right)^{2}}\right] \\
& =\frac{0.1 \times 10^{-12}}{\frac{1}{2} \times 120 \times 10^{-6} \times \frac{5}{0.5}}\left[\frac{0.8}{1.7^{2}}+\int_{0.8}^{2} \frac{-d v_{0}}{\left(v_{0}-2.5\right)\left(v_{0}+0.9\right)}\right] \\
& =\frac{10^{-9}}{6}\left[\frac{0.8}{1.7^{2}}+\frac{5}{17} \ln \left(\left|\frac{10 v_{0}+91}{2 v_{0}-5}\right|\right)\right]_{0.8}^{2} \\
& =\frac{10^{-9}}{6}\left[\frac{0.8}{1.7^{2}}+\frac{5 \ln }{17} \ln 29-\frac{5}{17} \ln (5)\right]=0.1323 \mathrm{nsec} . \\
\Rightarrow t_{2} & =\Delta t+1 \mu \mathrm{sec}=1000.1323 \mathrm{nsec} \simeq 1 \mu \mathrm{sec}
\end{aligned}
$$

