American University of Beirut Department of Electrical and Computer Engineering

EECE 310 – Electronics

Fall 2007 - 2008

Homework 10

In the following problems, assume that in the active region, $|V_{BE}| = 0.7 \text{ V}$.

1. The base current of the transistor shown in Fig. 1 is 25 μ A. The BJT has $\beta = 150$.

a) Assume that the BJT is active. Find I_E and the required value of R_B . b) Find V_{CE} and verify that the BJT is operating in the active region. c) If the amitter of the BIT is grounded, would the transistor remain in the s

c) If the emitter of the BJT is grounded, would the transistor remain in the active region? Use the value of R_B calculated in part (a).

2. The PNP transistor shown in Fig. 2 has $\alpha = 0.99$. Find R_E and R_C to get $I_E = 0.1$ mA and $V_{EC} = 3$ V.

3. For the BJT circuit shown in Fig. 3:

a) Find the minimum value of the collector voltage, such that the BJT remains in the active region. Assume $\beta = 150$.

b) Find the value of $R_{\rm C}$ needed to get a collector voltage half-way between the value calculated in part (a) and $V_{\rm CC} = +12$ V.

4. For the circuit shown in Fig. 4, the BJT has $\beta = 150$. Assume that $V_T = 25$ mV and that all capacitors are very large.

a) Find the DC values of $I_{\rm B}$, $I_{\rm C}$, and $V_{\rm CE}$.

b) Find the small-signal parameters $g_{\rm m}$, r_{π} , and $r_{\rm e}$.

c) Find the small-signal voltage gain of the amplifier, v_0/v_i .

d) Find the largest allowable signal swing (peak-to-peak) at the collector to satisfy the two conditions: BJT remains active, and v_{be} limited to 5 mV. What is the corresponding allowable peak-to-peak input voltage v_i ?

