American University of Beirut Department of Electrical and Computer Engineering

EECE 310 - Electronics
Fall 2011-2012
Due Wednesday December 7, 2011 at 9:00 am

Homework 8

Problem 1.

An voltage amplifier has a voltage gain of $99 \mathrm{~V} / \mathrm{V}$ when a $33 \mathrm{k} \Omega$ load is connected. When the load becomes $39 \mathrm{k} \Omega$, the voltage gain is found to be 108 .
a) Find the open-circuit voltage gain of this amplifier.
b) Find the output resistance of this amplifier.
c) When a signal source with a source resistance of $47 \mathrm{k} \Omega$ is connected to the input of the amplifier, the signal voltage is found to drop to 0.76 times its value when the signal source is open-circuited. Find the input resistance of the amplifier.

Problem 2.

a) An amplifier has an input resistance of $150 \mathrm{k} \Omega$, an output resistance of $35 \mathrm{k} \Omega$, and a shortcircuit current gain of 200. Draw the voltage amplifier model for this amplifier, including numerical values for all parameters.
Repeat for the transconductance amplifier model.
b) Three amplifiers similar to the one described in (a) are cascaded. Find the input resistance, output resistance, short-circuit current gain, short-circuit transconductance, and open-circuit voltage gain for the cascaded amplifier.
c) Find the overall voltage gain $v_{o} / v_{s i g}$, in V / V and in dB , when a signal source with a resistance of $200 \mathrm{k} \Omega$ is connected at the input of the cascaded amplifier, and a load with a resistance of $56 \mathrm{k} \Omega$ is connected at the output. Find the current gain and power gain in dB .

