Due Wednesday October 12, 2011 at 9:00 am

Homework 2

1. [10 points] A junction diode operating at a temperature of 37 degrees C is conducting a current of 0.33 mA , and has $n=1.2$.
(a) [$\mathbf{5}$ points] What is the value of I_{S} for this diode if the diode voltage is 0.777 V ?
(b) [5 points] What is the change in the diode voltage if the current increases by a factor of 1000 ?
2. [60 points] Find the operating point $\left(I_{\mathrm{D}}, V_{\mathrm{D}}\right)$ for the diodes in the circuits shown below. Assume that all the diodes are ideal. [5 points for the $\mathbf{I}_{\mathbf{D}}$ value per diode, 5 points for the \mathbf{V}_{D} value per diode].

3. [30 points]

a. [10 points] Assume that the diode in the circuit below is ideal. Find the operating point ($I_{\mathrm{D}}, V_{\mathrm{D}}$) of the diode. Hint: Use the Thévenin equivalent circuit.

b. Repeat part (a) for a real diode at a temperature of 27 degrees C with $n=1.2$ and $I_{\mathrm{S}}=10^{-14} \mathrm{~A}$, using:
i. [10 points] Iterations with an initial guess for I_{D} equal to the value found in part (a)
ii. [10 points] The graphical load line method.

