American University of Beirut
 Department of Electrical and Computer Engineering

EECE 310 - Electronics
Fall 2011-2012
Homework 1
Due Wednesday October 5, 2011 at 9:00 am

Problem 1. [50 points]

An amplifier has the transfer characteristic: $v_{O}=12-10\left(v_{I}-3\right)^{2}$ V.
where v_{O} and v_{I} are in volts. This transfer characteristic applies for $3<v_{I}<v_{O}+3 \mathrm{~V}$, and v_{O} positive. At the limits of this region, the amplifier saturates.
a) [15 points] Sketch and clearly label the transfer characteristic. What are the saturation levels $L+$ and L - and the corresponding values of v_{I} ?
b) [10 points] Bias the amplifier to obtain a DC output voltage of 6 V . What value of input DC voltage V_{I} is required?
c) [$\mathbf{1 0}$ points] Calculate the value of the voltage gain (in V / V and in $d B$) at the bias point.
d) [15 points] If a sinusoidal input signal is superimposed on the DC bias voltage V_{I}, that is: $v_{I}=V_{I}+V_{i} \cos (\omega t)$, find the resulting v_{O}. Express v_{O} as the sum of a DC component, a signal component at ω with amplitude A_{1} and another component at 2ω, with amplitude A_{2}. The component at 2ω is undesirable and is the result of the nonlinear transfer characteristic of the amplifier. If it is required to limit the ratio $\left|\frac{A_{2}}{A_{1}}\right|$ to 1%, what is the corresponding upper limit on V_{i} ?

Problem 2. [50 points]
An amplifier operating from $+/-12.7 \mathrm{~V}$ power supplies has a linear transfer characteristic except for output saturation at $+/-11 \mathrm{~V}$.
a) [12 points] The peak-to-peak value of the largest sinusoidal wave that can be applied at the amplifier input without output distortion is 0.5 V . Find the amplifier voltage gain in V/V and in dB .
b) [8 points] What is the corresponding output power for an 32Ω load?
c) [20 points] What is the power gain, in W/W and in dB , if the input power is 10 mW ? What is the current gain of the amplifier, in A / A and in dB ?
d) [10 points] What is the amplifier efficiency (in \%) if the DC current drawn from each power supply is 200 mA ?

