American University of Beirut

Department of Electrical and Computer Engineering
EECE 310 - Electronics I
Fall 2004-2005
Quiz 2 - December 22, 2004
Closed Book - 90 minutes
P2 $\quad / 12$

Cod Boak
P6 $\quad / 10$

P7 $\quad / 20$

Grade

NAME: \qquad ID Number: \qquad

I have neither given nor received aid on this exam
SIGNATURE

Problem 1 [16 points]

The drain current I_{D} of an enhancement n -channel MOSFET is measured at different values of $V_{\mathrm{GS}}, V_{\mathrm{DS}}$, and V_{BS}. The results are shown in the table below. For this transistor, find the values of $V_{\mathrm{t} 0}, k^{\prime}(W / L), \lambda$, and γ. Assume that $2\left|\phi_{\mathrm{f}}\right|=0.6 \mathrm{~V}$.

$\boldsymbol{V}_{\mathbf{G S}}(\mathbf{V})$	$\boldsymbol{V}_{\mathbf{D S}}(\mathbf{V})$	$\boldsymbol{V}_{\mathbf{B S}}(\mathbf{V})$	$\boldsymbol{I}_{\mathbf{D}}(\boldsymbol{\mu} \mathbf{A})$
2	2	0	101.25
3	3	0	340.20
2	3	0	105.00
2	3	-2	63.69

\square

Problem 2 [12 points]

For the MOSFET shown in the circuit below, find $V_{\mathrm{GS}}, V_{\mathrm{DS}}$, and I_{D}. In what region is the transistor operating? The MOSFET parameters are $V_{\mathrm{t}}=1 \mathrm{~V}$ and $k^{\prime}(W / L)=0.1$ $\mathrm{mA} / \mathrm{V}^{2}$.

\square

Problem 3 [20 points]

a) The MOSFET shown in the circuit below is to be biased in the saturation region at $V_{\mathrm{DS}}=5 \mathrm{~V}, I_{\mathrm{D}}=0.5 \mathrm{~mA}$. Find the required values of R_{D} and R_{S}, and calculate the values of the DC voltages $V_{\mathrm{G}}, V_{\mathrm{S}}$, and V_{D}. The MOSFET parameters are $V_{\mathrm{t}}=0.8 \mathrm{~V}$, $k^{\prime}(W / L)=0.06 \mathrm{~mA} / \mathrm{V}^{2}$, and $\lambda=0.03 \mathrm{~V}^{-1}$.

\square
b) The circuit is used as an amplifier with input at the gate, and output taken at the drain. What is the voltage gain of this amplifier at midband?
\square
c) What is the maximum sinusoidal voltage swing at the drain (with input signal applied at the gate) for the MOSFET to remain in saturation? Express the swing as a DC value, a maximum value, and a minimum value.
\square

Problem 4. [10 points]

a) A MOSFET is biased at $V_{\mathrm{DS}}=10 \mathrm{~V}, V_{\mathrm{GS}}=5 \mathrm{~V}$, and the resulting drain current is I_{D} $=1 \mathrm{~mA}$. Show the small-signal T-model of this MOSFET at the bias point (with all component values). The MOSFET parameters are $V_{\mathrm{t}}=1 \mathrm{~V}$, and $\lambda=0.01 \mathrm{~V}^{-1}$.
\square
b) How would you modify the T-model if body-effect is present with a signal voltage $v_{\text {bs }}$ appearing between body and source? Show the resulting circuit.
\square

Problem 5. [12 points]

a) Three identical amplifier stages are cascaded. For each of the amplifier stages, the input resistance is $100 \mathrm{~K} \Omega$, the output resistance is $20 \mathrm{~K} \Omega$, and the open-circuit voltage gain is 30 . Show the model of the resulting (single) voltage amplifier, with values of $R_{\mathrm{i}}, R_{\mathrm{o}}$, and $A_{\mathrm{v} 0}$.
\square
b) Show the equivalent model, with component values, for a (single) transconductance amplifier.

Problemm. [10 points]

Find the input resistance, voltage gain ($V_{\text {out }} /\left(/_{\text {sifig }}\right)$, and output resistance of the MOSFET amplifier shown. The MOSFET small-signal parameters are g_{m} and r_{0}.

\square

Problem 7. [20 points]

a) Find the midband gain $v_{\text {out }} / v_{\text {sig }}$ of the amplifier shown in the circuit below. The MOSFET is biased such that its small-signal transconductance is $g_{\mathrm{m}}=1 \mathrm{~mA} / \mathrm{V}$. Express the gain in dB .

b) What is the upper $3-\mathrm{dB}$ frequency (in Hz) of this amplifier if $C_{\mathrm{gs}}=C_{\mathrm{gd}}=1 \mathrm{pF}$? Use the Miller approximation. What is the bandwidth of this amplifier if its lower 3 dB frequency is 100 Hz ?
\square
C) Show the magnitude Bode plot for the amplifier tramsfer function $V_{\text {out }} / V_{\text {sig }}$. Use a range of frequencies from 1 Hz to 1 MHz .
d) Find the value of the bypass capacitor C_{S} to get a lower $3-\mathrm{dB}$ frequency of 100 Hz . Hint: Use the T-model to find $V_{\text {out }}(s) / V_{\text {sig }}(s)$ at low frequency, then use the definition of the lower 3 dB frequency to solve $\left|\frac{V_{\text {out }}\left(j \omega_{L^{\prime}}\right)}{V_{\text {sig }}\left(j \omega_{L}\right)}\right|=\frac{\mid \text { midband gain } \mid}{\sqrt{2}}$.

