American University of Beirut Department of Electrical and Computer Engineering

EECE 310 – Electronics I Quiz 2 – December 16, 2006 Closed Book – No Programmable Calculators 120 minutes <u>Penalty is 5 to 1</u>

Name: _

ID number:

Use $n_i \approx 1.25 \times 10^{10} / \text{ cm}^3$ $D_p = 12 \text{ cm}^2/\text{s}, D_n = 34 \text{ cm}^2/\text{s}$ $\mu_p = 480 \text{ cm}^2/\text{V.s}, \mu_n = 1350 \text{ cm}^2/\text{V.s}.$ $q = 1.6 \times 10^{-19} \text{ C}, V_T \approx 25 \text{ mV}, \epsilon_{\text{Si}} = 1.04 \times 10^{-12} \text{ F/cm}$ $1 \ \mu\text{m} = 10^{-4} \text{ cm}$ $1 \ \text{fF} = 10^{-15} \text{ F}$ Neglect body effect

1- A MOSFET is biased in the saturation region at a fixed V_{DS} , and at $I_D = 2$ mA, and $V_{OV} = 1$ V. Find the increase in the drain current (in mA) when the gate-to-source voltage increases by 10 mV.

a) 0.08 b) 0.07 c) 0.04 d) 0.05 e) 0.06

2- A MOSFET with $k'_n(W/L) = 1 \text{ mA/V}^2$, $V_t = 1.3 \text{ V}$, and $\lambda = 0.04 \text{ V}^{-1}$, is biased at $V_{\text{GS}} = 2 \text{ V}$, $V_{\text{DS}} = 4 \text{ V}$. Find the value of r_0 (in K Ω) for this MOSFET.

a) 88.9 b) 102.0 c) 61.7 d) 69.2 e) 78.1

Consider the two-stage amplifier shown in Figure 1. Assume G = 2 mA/V.

Figure	1	
--------	---	--

Consider the amplifier shown in Figure 2. The capacitors are very large.

Figure 2

7- The MOSFET is biased such that $g_m = 1.2 \text{ mA/V}$ and $r_0 = 55 \text{ K}\Omega$. Find the small-signal voltage gain of the amplifier (v_0/v_s).

a) -2.7 b) -3.1 c) -3.5 d) -3.9 e) -4.3

8- Assume that the gain from gate to drain v_0/v_i is -6. The drain of the MOSFET is biased at a DC voltage of 5 V. What should be the DC voltage at the gate (in V) in order to have a signal swing of +/-2.0 V at the drain, while keeping the MOSFET in saturation? The transistor has $V_t = 1$ V.

a) 3.67 b) 3.90 c) 4.60 d) 4.37 e) 4.13

Consider the common-source MOSFET amplifier shown in Figure 3. *Neglect channel-length modulation*.

9- Which of the following circuits corresponds to its small-signal equivalent?

10- Find the voltage gain v_o/v_s for the amplifier. The MOSFET small-signal transconductance is $g_m = 1.8 \text{ mA/V}$.

a) -5.5 b) -4.8 c) -2.6 d) -3.8 e) -3.2

11- A voltage of magnitude 8 V is applied across the ends of a bar of intrinsic Silicon having a cross-sectional area of 0.25 cm². How long should the bar be (in cm) in order to have a current of 12 μ A flowing through it?

a) 0.76 b) 0.69 c) 0.61 d) 0.46 e) 0.53

For a particular PN junction, the acceptor concentration is 5×10^{16} /cm³, and the donor concentration is 3×10^{12} /cm³.

12- Find the junction potential (in V) if no external bias is applied.

a) 0.46 b) 0.69 c) 0.63 d) 0.57 e) 0.52

13- Find the concentration of holes $(in \text{ cm}^{-3})$ in the n-type material.

a) 5.2×10^6 b) 5.2×10^8 c) 5.2×10^7 d) 5.2×10^4 e) 5.2×10^5

14- Find the depletion capacitance (in fF) when an 8 V reverse-bias is applied across this diode. The junction cross-sectional area is 500 μ m². The width of the depletion

region is given by
$$W = \sqrt{\frac{2\varepsilon_{\rm Si}}{|q|}} (V_{\rm o} + V_{\rm R}) \left(\frac{1}{N_{\rm A}} + \frac{1}{N_{\rm D}}\right).$$

a) 26 b) 8.5 c) 2.7 d) 0.86 e) 0.27

15- The hole concentration in the n-type material of a PN junction diode under forward bias is described by:

$$p(x) = 10^5 + 10^{17} e^{-x/L_p}$$
 holes/cm³

with $L_p = 3 \mu m$. Given that the cross-sectional area of the junction is 240 μm^2 , find the hole diffusion current (in mA) that flows in the n-material at $x = 2 \mu m$.

a) 0.26 b) 0.39 c) 0.53 d) 0.66 e) 0.79

To analyze the circuit shown in Figure 4, we use the MOSFET characteristics shown in Figure 5.

Figure 4

Figure 5 shows the characteristics for an NMOS transistor for a set of values of V_{GS} . The lowest value of V_{GS} is 1.5 V, the highest value is 10 V, with a step size of 0.5 V. Also a load line for the resistor R_D in the drain branch is shown in the figure. The values for i_D at the three points **A**, **B**, and **C** shown on the graph are: $i_{D(A)} = 9.28 \text{ mA}$ $i_{D(B)} = 10.56 \text{ mA}$ $i_{D(C)} = 5.94 \text{ mA}$

16- What is the value of the resistor R_D in Ω ?

a) 1000 b) 800 c) 750 d) 1100 e) 1200

17- What is the value of V_A in V? Use points A and B on the graph. <u>*Hint*</u>: Use the MOSFET current equation in saturation.

|--|

18- What is the value of V_t in V? Use points *B* and *C* on the graph. <u>*Hint*</u>: Use the MOSFET current equation in saturation.

a) 1.0 b) 0.9 c) 0.8 d) 0.7 e) 0.6

19- In the circuit, V_{GS} is set at 2.5 V. Construct a second load line for the case when the supply voltage V_{DD} is *reduced by* 2 V. Find the value of V_{DS} (in V) at the new quiescent point Q.

a) 4.3 b) 3.4 c) 6.6 d) 7.3 e) 5.7

Consider the circuit shown in Figure 6. For the MOSFET, $k'_n(W/L) = 1 \text{ mA/V}^2$, $V_t = 0.7 \text{ V}$, and $\lambda = 0$. Assume R = 1400 Ω .

20- The condition for operation of the MOSFET in the saturation region, rather than in the triode (linear) region, is:

a) $I \le 0.5 \text{ mA}$ b) $I \ge 0.5 \text{ mA}$ c) $V \le 1.4 \text{ V}$ d) $V \ge 0.7 \text{ V}$

21- For I = 0.5 mA, what is the value of V (in V)?

a) 1.60 b) 2.41 c) 2.58 d) 2.21 e) 1.70

In the circuit shown in Figure 7, the NMOS transistor is characterized by $k'_n(W/L) = 1 \text{ mA/V}^2$, $V_t = 1 \text{ V}$ and $\lambda = 0$. The PMOS transistor is characterized by $k'_p(W/L) = 0.25 \text{ mA/V}^2$, $|V_t| = 1 \text{ V}$ and $\lambda = 0$.

22- Given that V = 5 V, what is the value of I_D in mA?

	a) 12.5	<mark>b) 8.0</mark>	c) 4.5	d) 0.5	e) 2.0
--	---------	---------------------	--------	--------	--------

23- If V_{DD} = 8 V, what is the voltage V (in V) at the connected gates?

a) 3.67	b) 2.33	c) 2.67	d) 3.00	e) 3.33
---------	---------	---------	---------	---------

The NMOS transistor in the circuit of Figure 8 is characterized by $k'_n(W/L) = 0.5 \text{ mA/V}^2$, $V_t = 1 \text{ V}$, and $\lambda = 0$. The MOSFET is biased at $I_D = 0.5 \text{ mA}$. Assume $V_{DD} = 8 \text{ V}$.

Figure 8

24- Assuming operation in the saturation region, find R_D (in K Ω) if the drain voltage to ground $V_D = 2$ V.

a) 14	b) 12	c) 6	d) 8	e) 10
25- Find R	$_{\rm S}$ (in K Ω).			
a) 5.17	b) 7.17	c) 9.17	d) 11.17	e) 13.17

EECE 310 - Electronics I - Quiz 2 - Fall 2006-2007 - Page 7 of 7