American University of Beirut Department of Electrical and Computer Engineering

EECE 310 - Electronics
Quiz 2 - December 7, 2007
Closed Book - No Programmable Calculators
90 minutes
Penalty is 5 to 1
Name: \qquad ID number: \qquad

$$
\begin{gathered}
\text { Use } \\
n_{\mathrm{i}} \approx 1.25 \times 10^{10} / \mathrm{cm}^{3} \\
D_{\mathrm{p}}=12 \mathrm{~cm}^{2} / \mathrm{s}, D_{\mathrm{n}}=34 \mathrm{~cm}^{2} / \mathrm{s} \\
\mu_{\mathrm{p}}=470 \mathrm{~cm}^{2} / \mathrm{V} . \mathrm{s}, \mu_{\mathrm{n}}=1333 \mathrm{~cm}^{2} / \mathrm{V} . \mathrm{s} . \\
q=1.6 \times 10^{-19} \mathrm{C} \\
k=1.38 \times 10^{-23} \mathrm{~J} / \mathrm{K} \\
1 \mu \mathrm{~m}=10^{-4} \mathrm{~cm} \\
V_{\mathrm{T}} \approx 25 \mathrm{mV} \quad(\text { when } T \text { is not specified })
\end{gathered}
$$

Questions 1 to 4 are not included in Fall 2008-2009 Quiz 2

1. The electron and hole concentrations in a semiconductor material are as shown in the figure below.

The direction of current flow is in the:
a) negative x direction for holes, positive x direction for electrons
b) positive x direction for holes, positive x direction for electrons
c) negative x direction for holes, negative x direction for electrons
d) positive x direction for holes, negative x direction for electrons
e) none of the above
2. In Problem 1, the magnitude of the total current (in $\mu \mathrm{A}$) when $L=2.5 \mu \mathrm{~m}$ and $A=1 \mu \mathrm{~m}^{2}$ is:
a) 10.3
b) 31
c) 20.7
d) 15.5
e) 12.4
3. A PN junction diode is formed by doping the P type at a density $N_{\mathrm{A}}=4 \times 10^{16} \mathrm{~cm}^{-3}$ and the N type at a density $N_{\mathrm{D}}=5 \times 10^{17} \mathrm{~cm}^{-3}$. Find the minority concentration in the N -type material (in cm^{-3}).
a) 390.6
b) 260.4
c) 520.8
d) 223.2
e) 312.5
4. Find the potential barrier (in V) at $T=273 \mathrm{~K}$, when the doping density of acceptors is increased to $7 \times 10^{16} \mathrm{~cm}^{-3}$.
a) 0.758
b) 0.769
c) 0.778
d) 0.785
e) 0.792
5. An N-channel MOSFET with $k^{\prime}=100 \mu \mathrm{~A} / \mathrm{V}^{2}$ is biased in the triode (linear) region. The drain current is 1 mA at an overdrive voltage of 0.6 V . When $V_{\text {OV }}$ increases to 0.8 V , with constant V_{DS}, the drain current increases to 1.9 mA .
Find the value of $V_{\mathrm{DS}}($ in V$)$.
a) 0.89
b) 0.84
c) 0.63
d) 0.76
e) 0.4
6. Find the value of (W / L) for the MOSFET in the previous problem.
a) 72.8
b) 62.5
c) 55.7
d) 59.6
e) 65.8
7. A P-channel MOSFET is biased at $V_{\mathrm{GS}}=-3, V_{\mathrm{DS}}=-1$, and has a threshold voltage $V_{\mathrm{t}}=-1 \mathrm{~V}$. Find its region of operation.
a) Saturation
b) Not enough data to decide
c) Triode (linear)
d) Cut-off
e) None of the above
8. In the circuit shown in Figure A , find the value of V_{DD} (in V) that will place the MOSFET at the edge of saturation (i.e. at the intersection between triode and saturation). Assume $R_{\mathrm{D}}=6 \mathrm{~K} \Omega$, and for the MOSFET:
$k^{\prime}(W / L)=0.5 \mathrm{~mA} / \mathrm{V}^{2}$ and $V_{\mathrm{t}}=0.7 \mathrm{~V}$.

Figure A
a) 10.2
b) 11.6
c) 8.91
d) 6.27
e) 7.59
9. In the circuit shown in Figure A, assume $V_{\mathrm{DD}}=12$ and $R_{\mathrm{D}}=5 \mathrm{~K} \Omega$. For the MOSFET: $k^{\prime}(W / L)=0.5 \mathrm{~mA} / \mathrm{V}^{2}, V_{\mathrm{t}}=0.8 \mathrm{~V}$, and $\lambda=0.03 \mathrm{~V}^{-1}$.
Find the value of $V_{\mathrm{DS}}(\mathrm{in} \mathrm{V})$ for the MOSFET.
a) 3.89
b) 2.81
c) 6.25
d) 5.04
e) 7.55
10. Find the value of g_{m} (in mA / V) for the MOSFET in Problem 9.
a) 1.67
b) 1.47
c) 0.81
d) 1.04
e) 1.26
11. Find the value of r_{o} (in $\mathrm{K} \Omega$) for the MOSFET in Problem 9.
a) 45.9
b) 34.4
c) 27.5
d) 22.9
e) 19.7
12. Consider the two-stage amplifier shown below. What should be the value of G (in mA / V) to get an overall voltage gain $v_{\mathrm{o}} / v_{\mathrm{s}}$ of 750 ?

a) 2
b) 2.5
c) 3
d) 1
e) 1.5
13. Find the overall current gain, in the circuit of Problem $12, i_{0} / i_{i}$, when the 40 K load is replaced by a short circuit. Assume that $G=7 \mathrm{~mA} / \mathrm{V}$.
a) 20250
b) 15750
c) 11250
d) 13500
e) 18000

Consider the MOSFET amplifier shown in Figure B. The capacitors are very large.

Figure B
14. The MOSFET is biased such that $g_{\mathrm{m}}=0.85 \mathrm{~mA} / \mathrm{V}$ and $r_{\mathrm{o}}=100 \mathrm{~K} \Omega$. Find the small-signal voltage gain of the amplifier $\left(v_{0} / v_{i}\right)$.
a) -9.7
b) -7.6
c) -8.1
d) -8.6
e) -9.2
15. Assume that the gain from gate to drain $v_{0} v_{\mathrm{i}}$ is -10 . What should be the DC voltage at the drain (in V) in order to have a signal swing of $+/-2 \mathrm{~V}$ at the drain, while keeping the MOSFET in saturation? The transistor is biased at $V_{\mathrm{OV}}=0.7 \mathrm{~V}$.
Neglect signal distortion.
a) 3.1
b) 3.3
c) 2.7
d) 2.9
e) 2.5
16. Find the input resistance (in $\mathrm{K} \Omega$) of the amplifier shown in Figure B.
a) 56
b) 68
c) 82
d) 39
e) 47

To analyze the circuit shown below, we use the MOSFET characteristics shown in Figure C. The $i_{\mathrm{D}}-v_{\mathrm{DS}}$ curves correspond to the following values of $V_{\mathrm{GS}}: 1.2,1.7,2.2$, 2.7 , and 3.2 V .

The three points shown on the plot have the following coordinates $(3.3 \mathrm{~V}, 3.26 \mathrm{~mA})$, (3.3 V, 5.10 mA), and ($4.5 \mathrm{~V}, 5.36 \mathrm{~mA}$)

Assume that V_{DD} is 5 V and $R_{\mathrm{D}}=1 \mathrm{~K} \Omega$.

Figure C
17. Find the drain current (in mA) at the operating (Q) point of the MOSFET when $V_{\mathrm{GS}}=2.2 \mathrm{~V}$.
a) 1.8
b) 3.1
c) 3.6
d) 0.8
e) 0.3
18. Determine the value of λ (in V^{-1}) for the MOSFET.
a) 0.05
b) 0.07
c) 0.03
d) 0.02
e) 0.01
19. Determine the value of V_{t} (in V) for the MOSFET.
a) 1.3
b) 1.1
c) 0.7
d) 0.9
e) 0.5
20. What is the region of operation of the MOSFET if V_{GS} is raised to 3.2 V ?
a) Linear
b) Saturation
c) Cut-off
d) Not enough data to decide

In the circuit shown below, V_{DD} is 9 V . The resistor values are $R_{\mathrm{D}}=3.3 \mathrm{~K} \Omega, R_{\mathrm{S}}=2.2$ $\mathrm{K} \Omega$, and $R_{\mathrm{G}}=470 \mathrm{~K} \Omega$.

21. Find the voltage at the gate of the MOSFET.
a) $V_{\mathrm{DD}} / 2$
b) 0
c) V_{DD}
d) $-V_{\mathrm{DD}}$
e) none of the above
22. Find $V_{\mathrm{DS}}($ in $V)$ if $I_{\mathrm{D}}=1 \mathrm{~mA}$.
a) 4.5
b) 6.5
c) 8.5
d) 10.5
e) 12.5
23. Find $I_{\mathrm{D}}($ in mA$)$ when the MOSFET parameters are $k^{\prime}(W / L)=1 \mathrm{~mA} / \mathrm{V}^{2}$ and $V_{\mathrm{t}}=$ 1.2 V .
a) 1.78
b) 2.52
c) 1.06
d) 1.42
e) 2.15
24. The threshold voltage of an N-channel MOSFET increases from 0.8 to 1.1 V when the source-to-body voltage (V_{SB}) increases from 0 to 3 V . Find the value of $\gamma\left(\right.$ in $\mathrm{V}^{1 / 2}$) for this transistor. Assume that $2 \phi_{\mathrm{f}}=0.6 \mathrm{~V}$.
a) 0.445
b) 0.623
c) 0.356
d) 0.267
e) 0.534
25. In the circuit shown below, $V_{\text {IN }}$ is a very small voltage. Find the minimum V_{G} (in V) such that the circuit attenuates $V_{\text {IN }}$ by not more than 5%. Assume $R_{\mathrm{L}}=150 \Omega$. For the MOSFET: $k^{\prime}(W / L)=1 \mathrm{~mA} / \mathrm{V}^{2}$ and $V_{\mathrm{t}}=0.8 \mathrm{~V}$.

a) 1.22
b) 1.85
c) 1.15
d) 1.33
e) 1.50

