American University of Beirut	<u>P1</u>	/16
Department of Electrical and Computer Engineering	<u>P2</u>	/12
EECE 310 – Electronics I	<u>P3</u>	/12
Fall 2004 – 2005	<u>P4</u>	/12
Quiz 1 – November 5, 2004	<u>P5</u>	/6
Closed Book – 90 minutes	<u>P6</u>	/12
	<u>P7</u>	/10
	<u>P8</u>	/10
	<u>P9</u>	<u>/10</u>
	Grade	/100

NAME:_____ ID Number: _____

I have neither given nor received aid on this exam

SIGNATURE

ASSUME $V_{\rm T} = 25$ mV, UNLESS OTHERWISE SPECIFIED

Problem 1 [16 points]

An amplifier is characterized by the following relationships between its output voltage and its input voltage:

 $\begin{array}{ll} v_{\rm O} = 1 \ {\rm V} & {\rm for} \ v_{\rm I} < 2 \ {\rm V} \\ v_{\rm O} \ ({\rm in} \ {\rm V}) = 3 \ v_{\rm I} - 5 & {\rm for} \ 2 \ {\rm V} \le v_{\rm I} \le 3 \ {\rm V} \\ v_{\rm O} = 4 \ {\rm V} & {\rm for} \ v_{\rm I} > 3 \ {\rm V} \end{array}$

a) Plot the amplifier transfer characteristics (v_0 versus v_1) for $0 \text{ V} \le v_1 \le 5 \text{ V}$. [3 points]

b) In the amplification region, what is the gain of the amplifier (in V/V)? What is the gain of the amplifier in dB? [3 points]

c) What is the maximum peak-to-peak undistorted variation in the output voltage? What is the corresponding peak-to-peak variation in the input voltage? [3 points]

d) Where should the bias point (V_I, V_O) of this amplifier be in order to get the maximum undistorted output? [3 points]

e) For the input waveform shown below, plot and label, on the same graph, the output waveform. [4 points]

Problem 2 [12 points]

Measurements on a Si diode were taken at $v_D = 0.35$ V, 0.45 V, 0.55 V, and 0.65 V. The natural logarithm of the diode current in Amps, $\ln(i_D)$, is plotted on the y-axis versus v_D in Volts, on the x-axis. The resulting *straight-line* has a slope of 32, and a y-axis intercept of -30.

a) For this diode, find the values of n and $I_{\rm S}$. [8 points]

b) What is the diode current when $v_D = 0.7 \text{ V}$? [4 points]

Problem 3 [12 points]

The diodes in the circuit shown drop 0.7 V when conducting. Calculate the current in D2 and the voltage across R3. Verify all your assumptions.

Problem 4 [12 points]

A certain device *X* is described by the following I-V characteristic:

$$i_X = \frac{v_X}{4} + \sqrt{v_X}$$
 i_X is in mA and v_X is in Volts

This device is connected in series with a 2 K $\!\Omega$ resistor and a 3 V battery as shown below.

a) Using numerical iterations, and starting with $v_X = 0.8$ V, find the values of v_X and i_X for the device in this circuit. Show all steps in the calculation, and stop the iterations when consecutive values of v_X do not differ by more than 2 mV in absolute value. [6 points]

b) Plot the I-V characteristic for the device on the graph below at values of $v_x = 0.4$, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, and 1.1 V. Then, use the load line method to <u>graphically</u> determine i_x and v_x . [6 points]

Problem 5 [6 points]

A Si diode is biased at a DC current of 5 mA. What is the peak-to-peak *signal current* that can appear in the diode without exceeding the small-signal approximation limit?

Problem 6 [12 points]

A full-wave rectifier with a center-tap transformer uses two diodes that are assumed ideal. The average value of the output voltage is 10 V, across a 100 Ω load resistor.

a) Find the maximum value of the sinusoidal voltage at the secondary of the transformer (from the center tap to one of the transformer terminals on the secondary.)[4 points]

b) Find the average diode current. [4 points]

c) Find the diode PIV. [4 points]

For the v_S waveform shown below, plot and label, on the same graph, the output waveform that is produced by the circuit shown above.

Problem 8 [10 points]

The Zener diode shown in the circuit below is rated at $V_Z = 12$ V for a test current of 25 mA. The value of the incremental Zener resistance r_Z is 10 Ω . The Zener knee current I_{ZK} is 5 mA. Find the Zener current and the Zener voltage in the circuit shown. Verify all assumptions.

Problem 9 [10 points]

The density of donor atoms in a semiconductor is 5×10^{16} cm⁻³. The mobility of electrons in the semiconductor is 1300 cm²/V.sec and that of holes is 500 cm²/V.sec. The intrinsic density is $n_i = 1.5 \times 10^{10}$ cm⁻³. The magnitude of electron charge is 1.6×10^{-19} C.

a) Is the semiconductor N-type or P-type? Why? [2 points]

b) Find the hole concentration. Does the hole concentration increase, decrease, or remain unchanged when temperature increases? [2 points]

c) Find the concentration of free electrons. Does the free electron concentration increase, decrease, or remain unchanged when temperature increases? [2 points]

d) Calculate the conductivity of the semiconductor. [2 points]

e) Find the drift current density due to holes if an electric field of 10^4 V/cm is applied. [2 points]