	P1	/16
	P2	/12
	P3	/12
	P4	/12
	P5	/6
	P6	112
	P7	110
	P8	110
	P9	110
Grade		/100

NAME: \qquad ID Number: \qquad I have neither given nor received aid on this exam

SIGNATURE

ASSUME $V_{T}=\mathbf{2 5} \mathbf{m V}$, UNLESS OTHERWISE SPECIFIED

Problem 1 [16 points]

An amplifier is characterized by the following relationships between its output voltage and its input voltage:

$$
\begin{array}{ll}
v_{\mathrm{O}}=1 \mathrm{~V} & \text { for } v_{\mathrm{I}}<2 \mathrm{~V} \\
v_{\mathrm{O}}(\text { in } \mathrm{V})=3 v_{\mathrm{I}}-5 & \text { for } 2 \mathrm{~V} \leq v_{\mathrm{I}} \leq 3 \mathrm{~V} \\
v_{\mathrm{O}}=4 \mathrm{~V} & \text { for } v_{\mathrm{I}}>3 \mathrm{~V}
\end{array}
$$

a) Plot the amplifier transfer characteristics (v_{O} versus v_{I}) for $0 \mathrm{~V} \leq v_{\mathrm{I}} \leq 5 \mathrm{~V}$. [3 points]

b) In the amplification region, what is the gain of the amplifier (in V / V)? What is the gain of the amplifier in dB ? [3 points]
c) What is the maximum peak-to-peak undistorted variation in the output voltage?

What is the corresponding peak-to-peak variation in the input voltage? [3 points]
\square
d) Where should the bias point $\left(\mathrm{V}_{\mathrm{I}}, \mathrm{V}_{\mathrm{O}}\right)$ of this amplifier be in order to get the maximum undistorted output? [3 points]
e) For the input waveform shown below, plot and label, on the same graph, the output waveform. [4 points]

Problem 2 [12 points]

Measurements on a Si diode were taken at $v_{\mathrm{D}}=0.35 \mathrm{~V}, 0.45 \mathrm{~V}, 0.55 \mathrm{~V}$, and 0.65 V .
The natural logarithm of the diode current in Amps, $\ln \left(i_{\mathrm{D}}\right)$, is plotted on the y -axis versus v_{D} in Volts, on the x -axis. The resulting straight-line has a slope of 32 , and a yaxis intercept of -30 .
a) For this diode, find the values of n and I_{S}. [8 points]
\square
b) What is the diode current when $v_{\mathrm{D}}=0.7 \mathrm{~V}$? [4 points]

Problem 3 [12 points]

The diodes in the circuit shown drop 0.7 V when conducting.
Calculate the current in D2 and the voltage across R3. Verify all your assumptions.

Problem 4 [12 points]

A certain device X is described by the following I-V characteristic:

$$
i_{X}=\frac{v_{X}}{4}+\sqrt{v_{X}} \quad i_{X} \text { is in } \mathrm{mA} \text { and } v_{X} \text { is in Volts }
$$

This device is connected in series with a $2 \mathrm{~K} \Omega$ resistor and a 3 V battery as shown below.

a) Using numerical iterations, and starting with $v_{X}=0.8 \mathrm{~V}$, find the values of v_{X} and i_{X} for the device in this circuit. Show all steps in the calculation, and stop the iterations when consecutive values of v_{X} do not differ by more than 2 mV in absolute value. [6 points]
b) Plot the I-V characteristic for the device on the graph below at values of $v_{X}=0.4$, $0.5,0.6,0.7,0.8,0.9,1.0$, and 1.1 V . Then, use the load line method to graphically determine i_{X} and v_{X}. [6 points]

Problem 5 [6 points]

A Si diode is biased at a DC current of 5 mA . What is the peak-to-peak signal current that can appear in the diode without exceeding the small-signal approximation limit?

Problem 6 [12 points]

A full-wave rectifier with a center-tap transformer uses two diodes that are assumed ideal. The average value of the output voltage is 10 V , across a 100Ω load resistor.
a) Find the maximum value of the sinusoidal voltage at the secondary of the transformer (from the center tap to one of the transformer terminals on the secondary.) [4 points]
\square
b) Find the average diode current. [4 points]
\square
c) Find the diode PIV. [4 points]

Problem 7 [10 points]

For the v_{S} waveform shown below, plot and label, on the same graph, the output waveform that is produced by the circuit shown above.
voltage (V)

Problem 8 [10 points]

The Zener diode shown in the circuit below is rated at $V_{Z}=12 \mathrm{~V}$ for a test current of 25 mA . The value of the incremental Zener resistance r_{Z} is 10Ω. The Zener knee current $I_{Z K}$ is 5 mA . Find the Zener current and the Zener voltage in the circuit shown. Verify all assumptions.

Problem 9 [10 points]

The density of donor atoms in a semiconductor is $5 \times 10^{16} \mathrm{~cm}^{-3}$. The mobility of electrons in the semiconductor is $1300 \mathrm{~cm}^{2} / \mathrm{V} . \sec$ and that of holes is $500 \mathrm{~cm}^{2} / \mathrm{V} . \mathrm{sec}$. The intrinsic density is $n_{i}=1.5 \times 10^{10} \mathrm{~cm}^{-3}$. The magnitude of electron charge is $1.6 \times 10^{-19} \mathrm{C}$.
a) Is the semiconductor N-type or P-type? Why? [2 points]
b) Find the hole concentration. Does the hole concentration increase, decrease, or remain unchanged when temperature increases? [2 points]
c) Find the concentration of free electrons. Does the free electron concentration increase, decrease, or remain unchanged when temperature increases? [2 points]
\square
d) Calculate the conductivity of the semiconductor. [2 points]
\square
e) Find the drift current density due to holes if an electric field of $10^{4} \mathrm{~V} / \mathrm{cm}$ is applied. [2 points]
\square

