American University of Beirut Department of Electrical and Computer Engineering

EECE 310 - Electronics I
Quiz 1 - November 3, 2006
Closed Book - No Programmable Calculators
90 minutes
Penalty is 5 to 1

Name: \qquad ID number: \qquad

Consider an amplifier with the following transfer characteristic:
$v_{O}=30-4\left(v_{I}-5\right)^{2} \quad$ for $5 \mathrm{~V} \leq v_{I} \leq v_{O}+6$ and v_{O} positive.
The amplifier is biased to obtain a DC output voltage of 9 V .
1- Find the lower limit L^{-}of $v_{O}($ in V)
a) 30
b) 3.91
c) 1.66
d) 0
e) none of the above

2- Find the small-signal voltage gain at the bias point.
a) 7.29
b) 18.33
c) -7.29
d) -18.33
e) none of the above

An amplifier uses +10 V and -10 V power supplies. It provides a $2 \mathrm{~V}_{\text {peak }}$ sine wave to an 80Ω load when its input is a $0.1 \mathrm{~V}_{\text {peak }}$ sine wave from which a $4.0 \mathrm{~mA}_{\text {peak }}$ sine wave current is drawn. The amplifier efficiency is 25%.

3- Find the power gain in dB .
a) 13.98
b) 20.97
c) 125
d) 41.9
e) none of the above

4- Find the current drawn from each of the two power supplies (in mA).
a) 17.7
b) 20.51
c) 5
d) 2.83
e) none of the above

5- Find the power dissipated in the amplifier (in mW).
a) 25
b) 100
c) 75
d) 57
e) none of the above

6- Consider the circuit shown below. The Zener diode has a test current and voltage of 10 mA and 9 V , respectively, and a Zener resistance of 20Ω. The diodes have a $V_{\mathrm{D} 0}=$ 0.65 V and $r_{\mathrm{D}}=20 \Omega$. Use the piecewise linear model for all diodes. For $v_{I}=20 \sin$ $\omega t \mathrm{~V}$, find the peak value of v_{O} (in V).
a) 10.66
b) 10.1
c) 11.33
d) 12.66
e) none of the above

The diode in the circuit below has the I-V characteristic as shown. Assume $\mathrm{R}_{1}=\mathrm{R}_{2}=$ $\mathrm{R}_{3}=100 \Omega, \mathrm{~V}_{\mathrm{S}}=9 \mathrm{~V}$. Construct the appropriate load line on the figure. Hint: Use two points at $V_{\mathrm{D}}=0.65 \mathrm{~V}$ and $V_{\mathrm{D}}=0.75 \mathrm{~V}$.

7- Find the diode current (in mA , to within $\pm 1 \mathrm{~mA}$)
a) 25
b) 27
c) 29
d) 31
e) none of the above

8 - What is the slope of the load line (in mA / V)?
a) -6.7
b) -8.2
c) -10
d) -20
e) none of the above

In the circuit shown, I_{X} is a DC current, much larger than I_{S} for the diodes. Assume $\mathrm{v}_{\mathrm{s}}=2 \cos (\omega \mathrm{t}) \mathrm{mV}$ and $\mathrm{v}_{\mathrm{o}} \approx \mathrm{V}_{\mathrm{O}}+\mathrm{V}_{\mathrm{o}} \cos (\omega \mathrm{t}) \mathrm{V}$. The capacitor in the circuit is large. It serves as an open-circuit for DC and as a short-circuit for AC signals.

9- What is the value of $\mathrm{V}_{\mathrm{o}}(\mathrm{in} \mathrm{mV})$?
a) 0.5
b) 1
c) 2
d) 3
e) none of the above

In the circuit shown, $\mathrm{I}_{\mathrm{X}}=22 \mathrm{~mA} . \mathrm{D}_{1}$ conducts $1 \mathrm{~mA} @ 0.7 \mathrm{~V}$ voltage drop. D_{2} conducts $10 \mathrm{~mA} @ 0.7 \mathrm{~V}$ voltage drop. Both diodes exhibit an increase in voltage drop of 0.1 V for a decade of current increase.

10- What is the voltage across the diodes (in V)?
a) 0.71
b) 0.73
c) 0.75
d) 0.76
e) none of the above

For a certain diode it is given that:

$$
\begin{aligned}
& \mathrm{v}_{\mathrm{D}}=0.690 \mathrm{~V} @ \mathrm{i}_{\mathrm{D}}=1 \mathrm{~mA} \\
& \mathrm{v}_{\mathrm{D}}=0.730 \mathrm{~V} @ \mathrm{i}_{\mathrm{D}}=4 \mathrm{~mA}
\end{aligned}
$$

11- What is the value of n for this diode? Assume $V_{\mathrm{T}}=25 \mathrm{mV}$.
a) 1.00
b) 1.15
c) 1.25
d) 1.40
e) none of the above

12- What is $\mathrm{v}_{\mathrm{D}} @ \mathrm{i}_{\mathrm{D}}=8 \mathrm{~mA}$?
a) 0.740 V
b) 0.745 V
c) 0.750 V
d) 0.755 V
e) none of the above

In the circuit shown below, assume that the diodes are ideal, and that $R=1 \mathrm{k} \Omega$, $\mathrm{V}_{1}=-5 \mathrm{~V}, \mathrm{~V}_{2}=-10 \mathrm{~V}$.

13- What is the value of I (in mA)?
a) 10
b) 5
c) 1
d) 0.5
e) none of the above

In the circuit of Figure 1, the diode drops 0.7 V when conducting. The source has a peak value of $V_{\mathrm{S}}=4 \mathrm{~V}$.

Figure 1
14- Find the maximum value of the diode current, in mA .
a) 38
b) 18
c) 23
d) 28
e) 33

15- Find the average value of the output voltage, in V.
a) 0.802
b) 0.441
c) 0.560
d) 0.681
e) 0.324

16- A capacitor is connected in parallel with the resistor. Find the minimum capacitance needed (in $\mu \mathrm{F}$) to have a ripple voltage in the output of at most 0.1 V . Assume $T=1 \mathrm{msec}$, and that the capacitor discharges during the period $t \approx T / 4$ to $t \approx$ $5 T / 4$, and so on.
a) 375
b) 175
c) 225
d) 275
e) 325

In the circuit of Figure 2, the diodes drop 0.6 V when conducting. The input voltage v_{I} is sinusoidal with a peak value of 11 V . Assume $V_{\mathrm{A}}=2.5 \mathrm{~V}$ and $V_{\mathrm{B}}=2 \mathrm{~V}$.

Figure 2
17- Find the maximum value of the output voltage v_{O}, in V .
a) 3.6
b) 4.6
c) 2.6
d) 3.1
e) 4.1

18- Find the minimum value of the output voltage v_{O} in V .
a) -7.3
b) -6.8
c) -5.3
d) -5.8
e) -6.3

The Zener regulator shown in Figure 3 uses a diode with the following parameters:
$V_{\mathrm{Z} 0}=5.9 \mathrm{~V}, r_{\mathrm{Z}}=10 \Omega, I_{\mathrm{ZK}}=1 \mathrm{~mA}$, and $I_{\mathrm{Z} \max }=250 \mathrm{~mA}$. Assume that $\mathrm{R}=330 \Omega$.

Figure 3
19- Find the output voltage V_{O} (in V) with no load.
a) 6.00
b) 6.13
c) 5.62
d) 5.74
e) 5.87

20- A load that draws a current I_{L} is connected from the output node to ground. Find the change in the output voltage $V_{\mathrm{O}}\left(\right.$ in mV) when I_{L} increases from 1 mA to 21 mA .
a) -194.1
b) -165.8
c) -78.8
d) -108.1
e) -137.1

21- A resistor is now connected (as the only load) from the output node to ground. Find the minimum value of resistance (in Ω) that keeps the Zener diode in the breakdown region.
a) 258.0
b) 492.4
c) 411.7
d) 352.2
e) 298.1

22- The input v_{I} to the circuit shown in Figure 4 is a $+/-10 \mathrm{~V}$ symmetrical square wave. Find the average value of the output voltage (in V) if the Zener diodes drop 0.7 V in the forward direction, $V_{\mathrm{Z} 1}=4.7 \mathrm{~V}$, and $V_{\mathrm{Z} 2}=5.6 \mathrm{~V}$.
a) -0.55
b) 0.85
c) 0.45
d) -0.95
e) -0.25

Figure 4
23- In the circuit of Figure 5, find the voltage $V_{\mathrm{X}}($ in V$)$ across R_{2}. Assume $V_{1}=7 \mathrm{~V}$, and $V_{2}=9 \mathrm{~V}$. The diodes are ideal.
a) 8
b) 9
c) 7.5
d) 7
e) 6

Figure 5
24- A full-wave rectifier uses a center-tap transformer with a primary winding of 100 turns, and two secondary windings of 10 turns each. The primary of the transformer is connected to a 220V RMS, 50 Hz source. Find the peak-inverse voltage (PIV), in V, of the diodes in the circuit, assuming that the diodes drop 0.8 V when conducting.
a) 86.3
b) 80.1
c) 61.4
d) 73.9
e) 67.6

