American University of Beirut Department of Electrical and Computer Engineering

EECE 310 – Electronics Quiz 1 – November 2, 2007 Closed Book – No Programmable Calculators 90 minutes <u>Penalty is 5 to 1</u>

Name:

ID number:

Assume in the following that $V_{\rm T} = 25$ mV.

Consider an amplifier with the following characteristics. The amplifier is biased to give a DC output voltage of 7.5 V.

5- What is the largest undistorted sinusoidal output signal, in V, that can be produced (around the bias point)?

a) $2 \sin(\omega t)$	b) $3 \sin(\omega t)$	c) 4 sin(ωt)
d) <mark>5 sin(ωt)</mark>	e) 6 sin(ωt)	

An amplifier uses +12 V and -12 V power supplies. The average current in each of the two supplies is 10 mA. The amplifier provides a 3.0 V RMS sine wave to a 50 Ω load when the input is a 0.5 V RMS sine wave, from which a 5 mA RMS sine wave current is drawn.

6- Find the voltage gain of the amplifier in dB.				
a) 13.6	b) 14.6	c) <mark>15.6</mark>	d) 16.4	e) 12.5
7- Find the po	wer gain of the	amplifier in dI	3	
-) 10 4	$1 \rightarrow 15^{-5}$	\sim 16.6) 177	(-) 10 (
a) 19.4	0) 15.5	c) 16.6	d) 17.7	e) <mark>18.6</mark>
8- Find the eff	ficiency of the a	amplifier (in %).	
a) 90	b) <mark>75</mark>	c) 60.5	d) 36.5	e) 48
9- What is the	power dissipat	ed in the ampli	fier (in mW)?	
a) 152	b) 125	c) 95	d) <mark>61</mark>	e) 23
		·		í.

Consider the circuit shown below.

Assume $R_1 = 10 \Omega$; $R_2 = 12 \Omega$; $R_3 = 30 \Omega$. The diode is a PN junction diode with n = 1.5. The diode current is 1 mA at the original value of V_A . The source V_A now increases by a small amount $v_a = 10$ mV.

10- Find th	e change v_y (in	(mV) in the val	ue of $V_{\rm Y}$.	
a) 1 03	b) 1 73	c) 2 24	d) 2 63	e) 3 18
u) 1.00	0) 11/0	•)	a) <u> </u>	•) ••
11- Find th	e change in die	ode current (in j	ιA).	
a) 53.0	b) 103	c) 86.6	d) <mark>74.8</mark>	e) 65.7

The Zener regulator shown below uses a diode with the following parameters: $V_{Z0} = 8.5 \text{ V}$, $r_Z = 15 \Omega$, $I_{ZK} = 5 \text{ mA}$, and $I_{Zmax} = 300 \text{ mA}$. The output voltage with no-load is 9 V.

12- Find th	ne value of the	resistor R (in Ω	2) in the circuit.	
a) 95	b) 190	c) 80	d) 144	e) 720

13- Assume that $R = 100 \Omega$. A load that draws a current I_L is connected from the output node to ground. Find the output voltage V_O (in V) when I_L is 25 mA. a) 8.5 b) 8.9 c) 9.2 d) 9.6 e) 9.9

The input v_{I} to the circuit shown below is a +/- 10 V symmetrical square wave. The Zener diodes drop 0.6 V in the forward direction, $V_{Z1} = 4.7$ V, and $V_{Z2} = 8.2$ V. Assume $R_{2} = 200 \Omega$.

14- Find the	e current (in mA	A) in the resisto	or R_2 when v_1 is	s 10 V.
a) 0.4	b) 0.545	c) 1	d) 0.8	e) 0.667
15- Find the a) 0.972	e average value b) 0.795	of the output v c) 0.583	voltage (in V). d) <mark>1.46</mark>	e) 1.17

A certain PN junction diode conducts 0.3 mA at 0.61 V and 3 mA at 0.71 V.

16- Find the v	alue of <i>I</i> _S for th	nis diode. (<i>n</i> A is	s 10 ⁻⁹ A, <i>p</i> is 10 ⁻	⁻¹² , f is 10 ⁻¹⁵)
a) 7.1 pA	b) <mark>0.24 nA</mark>	c) 0.85 nA	d) 20.4 fA	e) 0.58 pA
17- Find <i>i</i> _D (in a) 1.97	mmA) when v_D b) 9.49	is 0.7 V. c) 5.79	d) 4.0	e) <mark>2.38</mark>

In the circuit shown below, the diode drops 0.8 V when conducting. The source is $v_s = 8 \sin(2\pi \times 100t)$ V.

18- Find the maximum value of the diode current, in mA.a) 14.4b) 16.4c) 8.4d) 10.4e) 12.4

19- Find the first time instant (in ms) at which the diode starts to conduct (after t = 0).a) 0.142b) 0.182c) 0.159d) 0.255e) 0.213

20- Find the PIV for the diode, in V. a) 5 b) 6 c) 7 d) 8 e) 9

21- A capacitor is connected in parallel with the resistor. Find the minimum capacitance needed (in mF) to have a ripple voltage in the output of at most 0.1 V.
a) 1.64 b) 1.44 c) 1.04 d) 1.24 e) 0.84

In the circuit shown below, device X has the characteristics shown in the i_x - v_x plot. The load line intercepts the i_x axis at 8 mA and the v_x axis at 19 V.

In the circuit shown below, the diodes are modeled as an open-circuit when OFF, and as a series combination of a battery $V_{D0} = 0.65$ V and a resistor $r_D = 40 \Omega$, when conducting.

25- Find the voltage V_X (in V) when $V_{CC} = 4$ V. a) -1.76 b) -4.43 c) -3.76 d) -3.09 e) -2.43