American University of Beirut Department of Electrical and Computer Engineering

EECE 310 - Electronics
Quiz 1 - November 2, 2007
Closed Book - No Programmable Calculators
90 minutes

Penalty is 5 to 1
Name: \qquad ID number: \qquad

Assume in the following that $V_{\mathrm{T}}=25 \mathrm{mV}$.

Consider an amplifier with the following characteristics. The amplifier is biased to give a DC output voltage of 7.5 V .

1- Find $\mathrm{L}-$ in V .
a) 3
b) 1
c) 1.5
d) 2
e) 2.5

2- Find L+ in V.
a) 18
b) 9
c) 12
d) 15
e) 6

3- Find the DC bias voltage at the input, in V .
a) 3.5
b) 2
c) 3
d) 4
e) 5

4- Find the small-signal voltage gain at the bias point.
a) -8
b) -10
c) -12
d) -4
e) -6

5- What is the largest undistorted sinusoidal output signal, in V , that can be produced (around the bias point)?
a) $2 \sin (\omega t)$
b) $3 \sin (\omega t)$
c) $4 \sin (\omega t)$
d) $5 \sin (\omega t)$
e) $6 \sin (\omega t)$

An amplifier uses +12 V and -12 V power supplies. The average current in each of the two supplies is 10 mA . The amplifier provides a 3.0 V RMS sine wave to a 50Ω load when the input is a 0.5 V RMS sine wave, from which a 5 mA RMS sine wave current is drawn.

6- Find the voltage gain of the amplifier in dB .
a) 13.6
b) 14.6
c) 15.6
d) 16.4
e) 12.5

7- Find the power gain of the amplifier in dB .
a) 19.4
b) 15.5
c) 16.6
d) 17.7
e) 18.6

8- Find the efficiency of the amplifier (in \%).
a) 90
b) 75
c) 60.5
d) 36.5
e) 48

9- What is the power dissipated in the amplifier (in mW)?
a) 152
b) 125
c) 95
d) 61
e) 23

Consider the circuit shown below.

Assume $\mathrm{R}_{1}=10 \Omega ; \mathrm{R}_{2}=12 \Omega ; \mathrm{R}_{3}=30 \Omega$. The diode is a $P N$ junction diode with $n=$ 1.5. The diode current is 1 mA at the original value of V_{A}. The source V_{A} now increases by a small amount $v_{a}=10 \mathrm{mV}$.

10- Find the change v_{y} (in mV) in the value of V_{Y}.
a) 1.03
b) 1.73
c) 2.24
d) 2.63
e) 3.18

11- Find the change in diode current (in $\mu \mathrm{A}$).
a) 53.0
b) 103
c) 86.6
d) 74.8
e) 65.7

The Zener regulator shown below uses a diode with the following parameters: $V_{\mathrm{Z} 0}=8.5 \mathrm{~V}, r_{\mathrm{Z}}=15 \Omega, I_{\mathrm{ZK}}=5 \mathrm{~mA}$, and $I_{\mathrm{Z} \max }=300 \mathrm{~mA}$. The output voltage with noload is 9 V .

12- Find the value of the resistor R (in Ω) in the circuit.
a) 95
b) 190
c) 80
d) 144
e) 720

13- Assume that $R=100 \Omega$. A load that draws a current I_{L} is connected from the output node to ground. Find the output voltage V_{O} (in V) when I_{L} is 25 mA .
a) 8.5
b) 8.9
c) 9.2
d) 9.6
e) 9.9

The input v_{I} to the circuit shown below is a $+/-10 \mathrm{~V}$ symmetrical square wave. The Zener diodes drop 0.6 V in the forward direction, $V_{\mathrm{Z} 1}=4.7 \mathrm{~V}$, and $V_{\mathrm{Z} 2}=8.2 \mathrm{~V}$.
Assume $R_{2}=200 \Omega$.
14- Find the current (in mA) in the resistor R_{2} when v_{I} is 10 V .
a) 0.4
b) 0.545
c) 1
d) 0.8
e) 0.667

15- Find the average value of the output voltage (in V).
a) 0.972
b) 0.795
c) 0.583
d) 1.46
e) 1.17

A certain PN junction diode conducts 0.3 mA at 0.61 V and 3 mA at 0.71 V .
16 - Find the value of I_{S} for this diode. ($n \mathrm{~A}$ is $10^{-9} \mathrm{~A}, p$ is $10^{-12}, f$ is 10^{-15})
a) 7.1 pA
b) 0.24 nA
c) 0.85 nA
d) 20.4 fA
e) 0.58 pA

17- Find i_{D} (in mA) when v_{D} is 0.7 V .
a) 1.97
b) 9.49
c) 5.79
d) 4.0
e) 2.38

In the circuit shown below, the diode drops 0.8 V when conducting. The source is $v_{\mathrm{S}}=$ $8 \sin (2 \pi \times 100 t) \mathrm{V}$.

18- Find the maximum value of the diode current, in mA .
a) 14.4
b) 16.4
c) 8.4
d) 10.4
e) 12.4

19- Find the first time instant (in ms) at which the diode starts to conduct (after $t=0$).
a) 0.142
b) 0.182
c) 0.159
d) 0.255
e) 0.213

20- Find the PIV for the diode, in V.
a) 5
b) 6
c) 7
d) 8
e) 9

21- A capacitor is connected in parallel with the resistor. Find the minimum capacitance needed (in mF) to have a ripple voltage in the output of at most 0.1 V .
a) 1.64
b) 1.44
c) 1.04
d) 1.24
e) 0.84

In the circuit shown below, device X has the characteristics shown in the $i_{x}-v_{x}$ plot. The load line intercepts the i_{x} axis at 8 mA and the v_{x} axis at 19 V .

22- Find the value of V_{A} in V .
a) 28.5
b) 38
c) 4.75
d) 9.5
e) 19

23- Find the value of R in $\mathrm{K} \Omega$.
a) 4.75
b) 3.56
c) 0.594
d) 1.19
e) 2.38

24- Find the bias point voltage V_{X} of the device, in V.
a) 3
b) 4.5
c) 6
d) 1.5
e) 0.75

In the circuit shown below, the diodes are modeled as an open-circuit when OFF, and as a series combination of a battery $V_{\mathrm{D} 0}=0.65 \mathrm{~V}$ and a resistor $r_{\mathrm{D}}=40 \Omega$, when conducting.

25- Find the voltage $V_{\mathrm{X}}($ in V$)$ when $\mathrm{V}_{\mathrm{CC}}=4 \mathrm{~V}$.
a) -1.76
b) -4.43
c) -3.76
d) -3.09
e) -2.43

