American University of Beirut Department of Electrical and Computer Engineering

EECE 310 - Electronics

Quiz 2 - December 19, 2008

Closed Book - No Programmable Calculators

90 minutes

Penalty is 5 to 1

(1 to 4 wrong answers do not result in a penalty; 5 to 9 wrong answers cancel one correct answer; 10 to 14 wrong answers cancel two correct answers; and so on)
\qquad ANSWERS

ID number: \qquad

An N -channel MOSFET with $k^{\prime}=1 \mathrm{~mA} / \mathrm{V}^{2}$ is biased such that it is operating in the saturation region. The Early voltage for this MOSFET is $V_{\mathrm{A}}=5 \mathrm{~V}$.
When the MOSFET is biased at $V_{\mathrm{OV}}=1 \mathrm{~V}$, with $V_{\mathrm{DS}}=V_{\mathrm{X}}$ Volts, the drain current is 1 mA . When the overdrive voltage increases to $1.2 \mathrm{~V}, V_{\mathrm{DS}}$ decreases by 20% to $0.8 \times V_{\mathrm{X}}$ while the drain current increases to 1.2 mA .

1. Find the initial value of $V_{\mathrm{DS}}\left(V_{\mathrm{X}}\right.$ in V$)$.
a) 35
b) 32.5
c) 27.5
d) 25
e) 30
2. Find the value of (W / L) for this MOSFET.
a) $1 / 6$
b) $1 / 7$
c) $1 / 4$
d) $1 / 3$
e) $1 / 5$
3. If a P-channel MOSFET is biased at $V_{\mathrm{GS}}=-9 \mathrm{~V}$ and $V_{\mathrm{DS}}=-1 \mathrm{~V}$, and has a threshold voltage $V_{\mathrm{t}}=-3 \mathrm{~V}$, find its region of operation.
a) Triode (Linear)
b) Saturation
c) Cutoff
d) Pinch-Off
e) Unknown
4. Consider the two-stage amplifier shown below. What should be the value of G (in mA / V) to achieve a voltage gain v_{0} / v_{i} of 700 ?

a) 7.5
b) 4.5
c) 5.25
d) 6
e) 6.75
5. Find the output resistance (in $\mathrm{K} \Omega$) of the amplifier (set the input to zero, and use the definition of output resistance).
a) 94
b) 34
c) 7.06
d) 10
e) 24
6. If $G=3 \mathrm{~mA} / \mathrm{V}$, what is the short-circuit transconductance $i_{0} / v_{\mathrm{i}}($ in $\mathrm{mA} / \mathrm{V})$, when the 20 K load resistance connected across the output is set to zero (replaced by a short circuit)?
a) 21.2
b) 31.8
c) 42.4
d) 52.9
e) 63.5

The drain current of an enhancement N-channel MOSFET is measured at several values of $V_{\mathrm{GS}}, V_{\mathrm{DS}}$, and V_{SB}, as shown in the table below. For this MOSFET, $\left|2 \phi_{\mathrm{f}}\right|=0.6 \mathrm{~V}$.

$\boldsymbol{V}_{\mathbf{G S}}(\mathbf{V})$	$\boldsymbol{V}_{\mathbf{D S}}(\mathbf{V})$	$\boldsymbol{V}_{\mathbf{S B}}(\mathbf{V})$	$\boldsymbol{I}_{\mathbf{D}} \mathbf{(m A)}$
3	3	0	3.6
3	4	0	4.2
4	1	0	I_{X}
4	4	0	9.45
4	4	4	6.6703

7. Find the value of $V_{t 0}$ (in V).
a) 0.9
b) 0.8
c) 0.6
d) 0.7
e) 1.0
8. Find the value of $k^{\prime}(W / L)\left(\right.$ in $\left.m A / V^{2}\right)$.
a) 0.9
b) 1.4
c) 1.1
d) 1.2
e) 1.3
9. Find I_{X} (in mA).
a) 3.77
b) 3.92
c) 2.25
d) 3.24
e) 2.86
10. Find the value of V_{A} (in V).
a) 4
b) 3
c) 5
d) 10
e) 7
11. Find the value of $\gamma\left(\right.$ in $\left.\mathrm{V}^{1 / 2}\right)$.
a) 0.35
b) 0.4
c) 0.5
d) 0.3
e) 0.45

The MOSFET in the circuit below has the $i_{\mathrm{D}}-v_{\mathrm{DS}}$ characteristics shown in Figure A. The curves correspond to the following values of $V_{\mathrm{GS}}: 1,2,3,4$, and 5 V . Assume that $V_{\mathrm{DD}}=5 \mathrm{~V}$ and $R_{\mathrm{D}}=2.2 \mathrm{~K} \Omega$.

Figure A
12. Find the y-axis intercept of the load line.
a) 2.27
b) 5
c) 4.17
d) 3.33
e) 2.78
13. Find $V_{\mathrm{DS}}($ in V$)$ at the bias (Q) point of the MOSFET when $V_{\mathrm{GS}}=4 \mathrm{~V}$.
a) 2.4
b) 1.8
c) 0.8
d) 3.2
e) 1.2
14. Find the drain current (in mA) for the MOSFET in the circuit below. The MOSFET parameters are $V_{\mathrm{t} 0}=1 \mathrm{~V}, k^{\prime}(W / L)=1 \mathrm{~mA} / \mathrm{V}^{2}$, and $V_{\mathrm{A}}=4 \mathrm{~V}$.
Assume $V_{\mathrm{GS}}=3 \mathrm{~V}, V_{\mathrm{DD}}=9 \mathrm{~V}$ and $R_{\mathrm{D}}=1 \mathrm{~K} \Omega$.
a) 0.39
b) 1.44
c) 2.85
d) 4.33
e) 5.70

15. Find $V_{\mathrm{GS}}($ in V$)$ for the MOSFET in the circuit below. The MOSFET parameters are $V_{\mathrm{t} 0}=0.8 \mathrm{~V}$ and $k^{\prime}(W / L)=0.2 \mathrm{~mA} / \mathrm{V}^{2}$. Assume $R_{\mathrm{S}}=0.5 \mathrm{~K} \Omega$.
a) 3.67
b) 4.37
c) 3.99
d) 3.27
e) 3.02

16. The drain current for the MOSFET in the circuit shown is given by $V_{\mathrm{DD}} / 2 R$. The MOSFET threshold voltage is $-V_{\mathrm{DD}} / 8$. Find the product $k^{\prime}(W / L) \times V_{\mathrm{DD}} \times R$.
a) 6.6
b) 11.1
c) 9.0
d) 7.84
e) 7.1

17. Assume in the circuit below that v_{i} is a small voltage, not exceeding a few milliVolts. Find the value of (W / L) for the MOSFET, if it is required to have $v_{\mathrm{o}} / v_{\mathrm{i}}=0.5$ when $V_{\mathrm{GG}}=1.8 \mathrm{~V}$.
The MOSFET parameters are $V_{\mathrm{t} 0}=0.6 \mathrm{~V}$ and $k^{\prime}=0.1 \mathrm{~mA} / \mathrm{V}^{2}$.
a) 4.76
b) 3.70
c) 11.1
d) 8.33
e) 6.25

18. A MOSFET amplifier is biased at $V_{\mathrm{OV}}=0.1 \times V_{\mathrm{DD}}, V_{\mathrm{DS}}=0.5 \times V_{\mathrm{DD}}$. Find the product $g_{\mathrm{m}} \times r_{\mathrm{o}}$ for this MOSFET, if $V_{\mathrm{A}}=4 \times V_{\mathrm{DD}}$.
a) 150
b) 170
c) 90
d) 110
e) 130

In the circuit shown below, the MOSFET is biased such that $g_{\mathrm{m}}=1 \mathrm{~mA} / \mathrm{V}$ and $r_{\mathrm{o}}=50 \mathrm{~K} \Omega$. Assume that all capacitors are very large, and that $R=220 \mathrm{~K} \Omega$.

19. Find the overall small-signal voltage gain $v_{\mathrm{o}} / /_{\text {sig }}$.
a) -3.28
b) -3.89
c) -4.76
d) -5.14
e) -5.42
20. Find the input resistance $v_{\mathrm{i}} / i_{\mathrm{i}}$ in $\mathrm{K} \Omega$.
a) 28.7
b) 110
c) 89.2
d) 40.7
e) 68.8
21. Assume that the gain from gate to drain v_{0} / v_{i} is -8 . What is the maximum signal swing (in V) at the drain that keeps the MOSFET in saturation?
The transistor is biased at $V_{\mathrm{OV}}=0.8 \mathrm{~V}, V_{\mathrm{DS}}=3 \mathrm{~V}$. Neglect signal distortion.
a) $+/-2.13$
b) $+/-1.42$
c) $+/-1.6$
d) $+/-1.78$
e) $+/-1.96$
22. The process transconductance parameter k^{\prime} is $0.2 \mathrm{~mA} / \mathrm{V}^{2}$ for a certain process. If the dielectric thickness t_{ox} is reduced by a factor of 2 , find the new value of k ' (in $\mathrm{mA} / \mathrm{V}^{2}$).
a) 0.5
b) 0.4
c) 0.3
d) 0.2
e) 0.1
23. A MOSFET is biased at $V_{\mathrm{OV}}=1 \mathrm{~V}, V_{\mathrm{DS}}=3 \mathrm{~V}$, with $I_{\mathrm{D}}=0.2 \mathrm{~mA}$. Find the resistance value (in $\mathrm{K} \Omega$) that appears between gate and source in the small-signal T-model.
a) 1.67
b) 2.0
c) 5.0
d) 3.33
e) 2.5

