American University of Beirut **Department of Electrical and Computer Engineering**

EECE 310 – Electronics

Quiz 2 – December 19, 2008

Closed Book – No Programmable Calculators

90 minutes

Penalty is 5 to 1

(1 to 4 wrong answers do not result in a penalty; 5 to 9 wrong answers cancel one correct answer; 10 to 14 wrong answers cancel two correct answers; and so on)

An N-channel MOSFET with $k' = 1 \text{ mA/V}^2$ is biased such that it is operating in the saturation region. The Early voltage for this MOSFET is $V_A = 5 \text{ V}$. When the MOSFET is biased at $V_{OV} = 1 \text{ V}$, with $V_{DS} = V_X$ Volts, the drain current is 1 mA. When the overdrive voltage increases to 1.2 V, V_{DS} decreases by 20% to $0.8 \times V_X$ while the drain current increases to 1.2 mA.

1. Find the	e initial value of	$V_{\rm DS}(V_{\rm X} \text{ in V})$		
a) 35	b) 32.5	c) 27.5	d) 25	e) 30
2. Find the	e value of (<i>W/L</i>)	for this MOSI	FET.	
a) 1/6	b) 1/7	c) 1/4	d) 1/3	e) 1/5

3. If a P-channel MOSFET is biased at $V_{GS} = -9$ V and $V_{DS} = -1$ V, and has a threshold voltage $V_t = -3$ V, find its region of operation.

a) Triode (Linear) b) Saturation c) Cutoff d) Pinch-Off e) Unknown

4. Consider the two-stage amplifier shown below. What should be the value of G (in mA/V) to achieve a voltage gain v_0/v_i of 700?

5. Find the output resistance (in K Ω) of the amplifier (set the input to zero, and use the definition of output resistance).

	a) 94	b) 34	c) 7.06	d) 10	e) 24
--	-------	-------	---------	-------	-------

6. If G = 3 mA/V, what is the short-circuit transconductance i_0 / v_i (in mA/V), when the 20K load resistance connected across the output is set to zero (replaced by a short circuit)?

a) 21.2 b) 31.8 c) 42.4 d) 52.9 e) 63.5

The drain current of an enhancement N-channel MOSFET is measured at several values of V_{GS} , V_{DS} , and V_{SB} , as shown in the table below. For this MOSFET, $|2\phi_{\text{f}}| = 0.6$ V.

$V_{\rm GS}({ m V})$	$V_{\rm DS}({ m V})$	$V_{\rm SB}({ m V})$	$I_{\rm D}$ (mA)
3	3	0	3.6
3	4	0	4.2
4	1	0	$I_{\rm X}$
4	4	0	9.45
4	4	4	6.6703

7. Find the va a) 0.9	lue of V_{t0} (in V b) 0.8	'). c) 0.6	d) 0.7	e) 1.0
8. Find the va a) 0.9	lue of <i>k'(W/L)</i> b) 1.4	(in mA/V ²). c) 1.1	d) 1.2	e) 1.3
9. Find <i>I</i> _X (in a) 3.77	mA). b) 3.92	c) 2.25	d) 3.24	e) 2.86
10. Find the va) 4	value of V_A (in $\frac{1}{b}$) 3	V). c) 5	d) 10	e) 7
11. Find the v a) 0.35	tralue of γ (in V b) 0.4	^{1/2}). c) 0.5	d) 0.3	e) 0.45

The MOSFET in the circuit below has the $i_D - v_{DS}$ characteristics shown in Figure A. The curves correspond to the following values of V_{GS} : 1, 2, 3, 4, and 5 V. Assume that $V_{DD} = 5$ V and $R_D = 2.2$ K Ω .

Figure A

14. Find the drain current (in mA) for the MOSFET in the circuit below. The MOSFET parameters are $V_{t0} = 1 \text{ V}$, $k'(W/L) = 1 \text{ mA/V}^2$, and $V_A = 4 \text{ V}$. Assume $V_{GS} = 3 \text{ V}$, $V_{DD} = 9 \text{ V}$ and $R_D = 1 \text{ K}\Omega$. a) 0.39 b) 1.44 c) 2.85 d) 4.33 e) 5.70

15. Find V_{GS} (in V) for the MOSFET in the circuit below. The MOSFET parameters are $V_{t0} = 0.8$ V and k'(W/L) = 0.2 mA/V². Assume $R_S = 0.5$ KΩ. a) 3.67 b) 4.37 c) 3.99 d) 3.27 e) 3.02

17. Assume in the circuit below that v_i is a small voltage, not exceeding a few milliVolts. Find the value of (*W/L*) for the MOSFET, if it is required to have $v_o/v_i = 0.5$ when $V_{GG} = 1.8$ V.

The MOSFET parameters are $V_{t0} = 0.6$ V and k' = 0.1 mA/V². a) 4.76 b) 3.70 c) 11.1 d) 8.33 e) 6.25

18. A MOSFET amplifier is biased at $V_{OV} = 0.1 \times V_{DD}$, $V_{DS} = 0.5 \times V_{DD}$. Find the product $g_m \times r_o$ for this MOSFET, if $V_A = 4 \times V_{DD}$. a) 150 b) 170 c) 90 d) 110 e) 130

In the circuit shown below, the MOSFET is biased such that $g_m = 1 \text{ mA/V}$ and $r_0 = 50 \text{ K}\Omega$. Assume that all capacitors are very large, and that $R = 220 \text{ K}\Omega$.

22. The process transconductance parameter k' is 0.2 mA/V^2 for a certain process. If the dielectric thickness t_{ox} is *reduced* by a factor of 2, find the new value of k' (in mA/V^2).

a) 0.5 b) 0.4 c) 0.3 d) 0.2 e) 0.1

23. A MOSFET is biased at $V_{OV} = 1$ V, $V_{DS} = 3$ V, with $I_D = 0.2$ mA. Find the resistance value (in K Ω) that appears between gate and source in the small-signal *T*-model. a) 1.67 b) 2.0 c) 5.0 d) 3.33 e) 2.5