
MECH 310 Thermodynamics I November 20, 2008
American University of Beirut, Fall 2008 Handout # Quiz 1

Quiz 1 Solution

• This is a closed book 90 minutes exam. You allowed to bring one A4 hand written
cheat sheet which will be collected at end of exam. It is recommended that you read
the whole exam before you start solving.

• Write your name and section number on both the question and answer sheets.

• Clearly identify your control mass / control volume.

Problem 1 (25 points)
Consider the counter-flow heat exchanger shown in Figure 1 operating at steady condi-
tions. Heat is exchanged between two streams of fluid moving opposite to each other.
The mass flowrate of the hot fluid is ṁh = 10 kg/s and that of the cold fluid is ṁc = 5
kg/s. The inlet and outlet specific enthalpies of the hot fluid are hh,1 = 3000 kJ/kg and
hh,2 = 2500 kJ/kg. The inlet specific enthalpy of the cold fluid is hc,1 = 1500 kJ/kg. In
this problem changes in kinetic and potential energies are neglected.
(a) Assuming that the heat exchanger is perfectly insulated, what is the outlet specific
enthalpy of the cold fluid hc,2?
(b) What is the rate of entropy transport into the heat exchanger across its boundary due
to heat and work?
(c) Assuming specific entropy is known at both inlets and both outlets, sh,1, sh2 , sc,1, sc,2,
are given. What is the rate of entropy generation by irreversibility Ṡirr ? Is Ṡirr positive,
negative, zero? Explain.
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Figure 1: Schematic for problem 1.

Problem 1 Solution
(a) First law for a control volume at steady state, insulated Q← = 0, and in absence of
all kinds of work, and neglecting changes in kinetic and potential energy

ṁc(hc,2 − hc,1) + ṁh(hh,2 − hh,1) = 0⇒ hc,2 = hc,1 +
ṁh

ṁc

(hh,1 − hh,2)

⇒ hc,2 = 1500 + 2(3000− 2500) = 2500 kJ/kg
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(b) Entropy transport due to work is zero. so Ṡ←W = 0 ALWAYS. Since there is not heat
transfer, entropy transport is due to heat zero; Ṡ←Q = 0.
(c) Entropy balance

ṁc(sc,2 − sc,1) + ṁh(sh,2 − sh,1) = Ṡirr

It must be positive because the process is irreversible due to the heat transfer from the
hot stream to the cold stream. In order to reverse this heat transfer, we must put work,
which permanently changes the environment.

Problem 2 (25 points)
Consider the power generation engine shown in Figure 2. The engine operates in a ther-
modynamic cycle. (Thermodynamic cycle: final state is identical to initial state.) During
this cycle, the engine produces work W→

cycle while receiving heat Q←H for a high-temperature
reservoir. The entropy transported into the engine due to heat transfer Q←H is S←H .
(a) Relate W→

cycle to Q←H .
(b) By performing entropy balance, show that the above cyclic process is impossible.
(c) Explain that the only way the entropy balance for the cyclic engine is satisfied, the
engine must reject entropy S→ to the surrounding. How much should S→ be? How can
it be practically done ?

cyclic
engine

high temperature
reservoir

Q←H

W→

control mass

Figure 2: Schematic for problem 2.

Problem 2 Solution
(a) For an engine operating in a cycle ∆E = 0 since E2 = E1, then W→ = Q←.
(b) Entropy balance S2 = S1, so that

S2 − S1 = S←QH
+ Sirr

⇒ 0 = S←QH
+ Sirr

Since both terms on the right hand side of the above equation are positive, their sum
cannot be zero.
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(c) We need to remove entropy by rejecting heat Q→L to the surrounding so that entropy
balance becomes

0 = S←QH
− S→QL

+ Sirr ⇒ S→QL
= S←QH

+ Sirr

It is impossible for a cyclic engine to produce work while interacting with only one thermal
reservoir.

Problem 3 (25 points)
We consider isothermal expansion of 10 kg of air in the the piston cylinder arrangement
of Figure 3. Air is modeled as an ideal gas with R = 0.287 kJ/kg.K. During the process
from initial (equilibrium) state 1 to final (equilibrium) state 2, heat is added to the
gas by conduction across a wall of thickness h = 0.5 cm, area A = 0.1 m2, and thermal
conductivity k = 50 W/(m.K). On the gas side of the conducting wall, the gas temperature
is T = 50 ◦C and on the outer side of the wall, the temperature is To = 100 ◦C .
(a) If heat is conducted steadily through the wall into the gas from time t1 = 0 to times
t2 = 10 sec, what is the heat gained by gas Q←? [Hint: conduction heat flux is q = −k∇T
and assume linear temperature distribution on conducting wall.]
(b) Can we neglect changes in kinetic energy and changes in potential energy, i.e. KE2-
KE1 and PE2-PE1? Why?
(c) What is the work done by the gas during the expansion process? If the initial volume
is V1 = 0.01 m3, what is the final volume V2, temperature T2, and pressure p2?

       piston

conduction heat transfer
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h
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control mass

Figure 3: Schematic for problem 3.

Problem 3 Solution
(a) The heat gain per unit area per unit time is q = k(To−Ti)/h = 50(100− 50)/0.005 =
500 kJ/m2.s. The rate of heat gain is then qA = 500×0.1 = 50 kW. The heat transferred
over the period of 10 s is then Q← = qA(t2 − t1) = 500 kJ.
(b) The changes in potential and kinetic energy may be neglected if |∆K.E.| << Q←

3



and |∆P.E.| << Q←. Some of you stated that they should be less that ∆U , which is
zero in our problem, the process being isothermal. So this last statement is wrong. For
equilibrium or quasi-equilibrium initial and final states, the gas velocities are small, and
when multiplied by the gas density, which is small, yield small |∆K.E.|. Note that for
(exact) equilibrium states, K.E.1 = 0 and K.E.2 = 0. As for changes in potential energy
|∆P.E.| = ρg(V2 − V1) which for small ρ and |V2 − V1| may be neglected with respect to
Q←.
(c) First law of thermodynamics for a control mass between state 1 and state 2 is

E2 − E1 = Q← +W←

Since the process is isothermal U2 − U1 = 0, neglecting changes in kinetic and potential
energy, we get W→ = Q← = 500 kJ. The work done by a system during an isothermal

process is W→ = mRT ln V2

V1
⇒ V2 = V1e

W→
mRT = 0.01 × 1.715 = 0.0175 m3. Ideal has law

leads to p2 = 54055 pa.

Problem 4 (35 points)
In this problem, we investigate the thermodynamics of friction within a fluid. In par-
ticular, we consider a layer of lubricant (oil) of viscosity µ and density ρ. The oil layer
separates a fixed wall (which could be the cylinder wall) from a moving wall (which could
be the piston wall). The problem is steady and the upper wall velocity is V , and the oil
layer thickness is h. The velocity distribution inside the oil may be obtained from fluid
mechanics to be u(y) = V y

h
.

(a) The friction (viscous) force per unit area acting on (the lower side of) the moving
wall is τw = −µ (∂u/∂y)y=h. In which direction does this force pull the upper wall with
respect to it motion? Explain the molecular origins of this force.
(b) What is the rate of work done on the oil assuming that the dimensions of the oil layer
in the x and z are respectively 1 m and 1 m.
(c) If the oil enters the left side (i.e. at x = 0) at temperature T , what is its temperature
at exit (i.e. at x = 1 m). Assume the oil layer to be thermally insulated at the upper and
lower wall sides. Assume also that the specific heat of oil, cv, does not change over the
ranges of temperatures involved in the problem.
(d) Given initial and final equilibrium states, is the work done by the friction force path-
dependent? Support your answer by one or more scenarios.
(e) Is this process reversible? Explain.

Problem 4 Solution
(a) Friction pulls the wall in a direction opposite to its motion. Friction is due to the
tangential component of momentum transfer between adjacent layers of molecules that
due to their temperature are randomly oscillating about a mean position.
(b) The rate work done on oil per unit area is given by

Ẇ

A
=

1

A

∂

∂t

∫
F · dx =

∫ F

A
· dV

Notice that the force per unit area on the oil is opposite to the force per unit area on the
upper wall (action/reaction) so that F/A = −τwx̂. The fluid velocity at y = h is V = V x̂
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Figure 4: Schematic for problem 4.

so that

Ẇ

A
= −τwV = µV

(
∂u

∂y

)
y=h

=
µV 2

h

The rate of work done on the oil is then

Ẇ← =
Ẇ

A
A =

µV 2A

h

where A = 1 m2.
(c) For the control volume chosen to contain the oil of thickness h and extending from
x = 0 to x = 1 m, applying the first law for a control volume and noting that the flow is
steady, and noting that changes in kinetic energy and potential energy between inlet and
outlet is zero, then

Ẇ← = ṁ(h2 − h1)

where ṁ = ρV h/2. Considering oil to be compressed liquid for which h ' h(T ), then
h2 − h1 = cp(T2 − T1) so that

T2 = T1 + 2
Ẇ←

ρV hcp
= T1 + 2

µV

ρcph2

where it was assumed that cp does not change over the range [T1, T2].
(d) The work done by friction on the oil is path dependent. We could replace the work
effect by heat transfer into the oil that yields the same temperature rise. In the first
scenario Ẇ← = µV 2/h, Q← = 0 and in the second scenario Ẇ← = 0, Q← = µV 2/h. In
both cases we have the same inlet and outlet states.
(e) The process is irreversible because if we isolate the system, which amounts to stopping
the upper wall, there will internal heat transfer in the oil until a final uniform temperature
is reached at equilibrium.
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