Chapter 04 Solved Problems

Problem 4.20

$\mathrm{W}=\int \mathrm{Fdx}=\mathrm{F} \Delta \mathrm{x}=1500 \mathrm{~N} \times 100 \mathrm{~m}=150000 \mathrm{~J}=150 \mathbf{k J}$
$\mathrm{W}=\int \mathrm{Fdz}=\int \mathrm{mg} \mathrm{dz}=\mathrm{mg} \Delta \mathrm{Z}=500 \mathrm{~kg} \times 9.807 \mathrm{~m} / \mathrm{s}^{2} \times 3 \mathrm{~m}=14710 \mathrm{~J}=\mathbf{1 4 . 7} \mathbf{k J}$
$\mathbf{W}_{\text {total }}=150 \mathrm{~kJ}+14.7 \mathrm{~kJ}=\mathbf{1 6 4 . 7} \mathbf{~ k J}$

Problem 4.22

$W=\int F d x=\int P d V=\int P A d x=P A x H=P \Delta V$
$\Delta \mathrm{V}=\mathrm{W} / \mathrm{P}=1 \mathrm{~kJ} / 1200 \mathrm{kPa}=\mathbf{0 . 0 0 0} 833 \mathbf{~ m}^{3}$
Both cases the height is $\mathrm{H}=\Delta \mathrm{V} / \mathrm{A}$
$\mathrm{H} 1=0.000833 / 0.01=\mathbf{0 . 0 8 3 3} \mathbf{~ m}$
$\mathrm{H} 2=0.000833 / 0.03=\mathbf{0 . 0 2 7 8} \mathbf{~ m}$

Problem 4.27

Control volume radiator.
After the valve is closed no more flow, constant volume and mass.
1: $\mathrm{x}_{1}=1, \mathrm{P}_{1}=110 \mathrm{kPa} \Rightarrow \mathrm{v}_{1}=\mathrm{v}_{\mathrm{g}}=1.566 \mathrm{~m} 3 / \mathrm{kg}$ from Table B.1.2
2: $\mathrm{T}_{2}=25^{\circ} \mathrm{C}$
Process: $\mathrm{v}_{2}=\mathrm{v}_{1}=1.566 \mathrm{~m}^{3} / \mathrm{kg}=[0.001003+\mathrm{x} 2 \times 43.359] \mathrm{m} 3 / \mathrm{kg}$

$$
x_{2}=1.566-0.001003 / 43.359=\mathbf{0 . 0 3 6 1}
$$

State 2 : $\mathrm{T}_{2}, \mathrm{x}_{2}$ From Table B.1.1 $\mathbf{P}_{2}=\mathbf{P}_{\text {sat }}=\mathbf{3 . 1 6 9} \mathbf{~ k P a}$

Work is $\mathbf{0}$ since constant volume process

Problem 4.28

Table B.1.2 $\mathrm{v}_{1}=0.4625 \mathrm{~m}^{3} / \mathrm{kg} \mathrm{V}_{1}=\mathrm{mv}_{1}=0.0925 \mathrm{~m}^{3}$
$\mathrm{v}_{2}=\mathrm{v}_{1} / 2=0.23125 \mathrm{~m}^{3} / \mathrm{kg}_{2}=\mathrm{V}_{1} / 2=0.04625 \mathrm{~m}^{3}$
Process: $\mathrm{P}=$ Cst so the work term integral is
$\mathrm{W}=\int \mathrm{PdV}=\mathrm{P}\left(\mathrm{V}_{2}-\mathrm{V}_{1}\right)=400 \mathrm{kPa} \times(0.04625-0.0925) \mathrm{m}^{3}=-18.5 \mathrm{~kJ}$

Problem 4.30

Taking a control volume enclosing all the argon in both A and B .
The boundary movement work done in cylinder B against constant external pressure of 150 kPa . Argon is an ideal gas, so writing out that the mass and temperature at state 1 and 2 are the same:
$\mathrm{P}_{\mathrm{A} 1} \mathrm{~V}_{\mathrm{A}}=\mathrm{m}_{\mathrm{A}} \mathrm{RT}_{\mathrm{A} 1}=\mathrm{m}_{\mathrm{A}} \mathrm{RT}_{2}=\mathrm{P}_{2}\left(\mathrm{~V}_{\mathrm{A}}+\mathrm{V}_{\mathrm{B} 2}\right)$
$\Rightarrow V_{B 2}=250 \times 0.4 / 150-0.4=0.2667 \mathrm{~m}^{3}$
$W_{12}=\int P_{\text {ext }} d V=P_{\text {ext }}\left(V_{B 2}-V_{B 1}\right)=150 \mathrm{kPa}(0.2667-0) \mathrm{m}^{3}=40 \mathbf{k J}$

Problem 4.33

$\mathrm{P}_{1}=\mathrm{P}_{0}+\rho \mathrm{gH}$
$=101.32+997 \times 9.807 \times 5 / 1000=150.2 \mathrm{kPa}$
$\Delta \mathrm{V}=\mathrm{H} \times \mathrm{A}=5 \times 0.1=0.5 \mathrm{~m}^{3}$
$\mathrm{W}_{12}=\mathrm{AREA}=\int \mathrm{PdV}=1 / 2\left(\mathrm{P}_{1}+\mathrm{P}_{0}\right) /\left(\mathrm{V}_{\max }-\mathrm{V}_{1}\right)=1 / 2(150.2+101.32) \mathrm{kPa} \times 0.5 \mathrm{~m}^{3}=\mathbf{6 2 . 8 8} \mathbf{~ k J}$

Problem 4.35

a. State 1: Compressed liquid, saturated liquid at same temperature.
B.1.1: $\mathrm{v}_{1}=\mathrm{v}_{\mathrm{f}}\left(20^{\circ} \mathrm{C}\right)=0.001002 \mathrm{~m}^{3} / \mathrm{kg}$,

State 2: $\mathrm{v}_{2}=\mathrm{V}_{2} / \mathrm{m}=0.1 / 1=0.1 \mathrm{~m}^{3} / \mathrm{kg}$ and $\mathrm{P}=3000 \mathrm{kPa}$ from B.1.3
\Rightarrow Superheated vapor close to $T=400^{\circ} \mathrm{C}$ so by interpolating: $\mathbf{T}_{\mathbf{2}}=\mathbf{4 0 4}{ }^{\circ} \mathrm{C}$

c. Work is done while piston moves at linearly varying pressure, so we get:
$\mathrm{W}_{12}=\int \mathrm{PdV}=\mathrm{P}_{\text {ave }}\left(\mathrm{V}_{2}-\mathrm{V}_{1}\right)=1 / 2\left(\mathrm{P}_{1}+\mathrm{P}_{2}\right)\left(\mathrm{V}_{2}-\mathrm{V}_{1}\right)=0.5(300+3000)(0.1-0.001)=\mathbf{1 6 3 . 3 5} \mathbf{~ k J}$

Problem 4.47

Process: $\mathrm{Pv}^{\mathrm{n}}=$ Const $=\mathrm{P}_{1} \mathrm{~V}^{\mathrm{n}}{ }_{1}=\mathrm{P}_{2} \mathrm{~V}^{\mathrm{n}}{ }_{2}$
Ideal gas so : $\mathrm{Pv}=\mathrm{RT}$
$\mathrm{v}_{1}=\mathrm{RT} / \mathrm{P}=0.287 \times 325 / 125=0.7462 \mathrm{~m}^{3} / \mathrm{kg}$
$\mathrm{v}_{2}=\mathrm{RT} / \mathrm{P}=0.287 \times 500 / 300=0.47833 \mathrm{~m}^{3} / \mathrm{kg}$
From the process equation
$\left(\mathrm{P}_{2} / \mathrm{P}_{1}\right)=\left(\mathrm{v}_{1} / \mathrm{v}_{2}\right)^{\mathrm{n}}=>\ln \left(\mathrm{P}_{2} / \mathrm{P}_{1}\right)=\mathrm{n} \ln \left(\mathrm{v}_{1} / \mathrm{v}_{2}\right)$
$\mathrm{n}=\ln \left(\mathrm{P}_{2} / \mathrm{P}_{1}\right) / \ln \left(\mathrm{v}_{1} / \mathrm{v}_{2}\right)=\ln 2.4 / \ln 1.56=\mathbf{1 . 9 6 9}$
The work per unit mass (specific work) is:
$w_{12}=\frac{P_{2} v_{2}-P_{1} v_{1}}{1-n}=\frac{R\left(T_{2}-T_{1}\right)}{1-n}=\frac{0.287(500-325)}{-0.969}=-51.8 \mathrm{~kJ}$

Problem 4.50

Process: $\mathrm{Pv}^{\mathrm{n}}=$ Const $=\mathrm{P}_{1} \mathrm{~V}^{\mathrm{n}}{ }_{1}=\mathrm{P}_{2} \mathrm{~V}^{\mathrm{n}}{ }_{2}$
$T_{2}=T_{1}\left(\frac{P_{1}}{P_{2}}\right)^{\frac{n-1}{n}}=300.15\left(\frac{100}{250}\right)^{\frac{0.25}{1.25}}=360.5 \mathrm{~K}$
To evaluate the work:

$$
W_{12}=\frac{P_{2} V_{2}-P_{1} V_{1}}{1-n}=m \cdot \frac{P_{2} v_{2}-P_{1} v_{1}}{1-n}=m \cdot \frac{R\left(T_{2}-T_{1}\right)}{1-n}=0.1 \frac{0.2968(360.5-300.15)}{-0.25}
$$

$$
=-7.165 \mathrm{~kJ}
$$

Problem 4.59

a) From Table B.4.2: $\mathrm{v}_{1}=0.17732 \mathrm{~m}^{3} / \mathrm{kg}$,
$\mathrm{m}=\mathrm{V} / \mathrm{v}=0.010 / 0.17732=0.056395 \mathrm{~kg}$

For the final state, if the piston were at the final stop, then $\mathrm{V}_{1 \mathrm{a}}$ would have been of 11 L Then $\mathrm{v}_{1 \mathrm{a}}=\mathrm{V} / \mathrm{m}=0.011 / 0.056395=0.19505 \mathrm{~m}^{3} / \mathrm{kg}$
$\Rightarrow \mathrm{T}_{1 \mathrm{a}}=-9.4^{\circ} \mathrm{C}$ but $\mathrm{T}_{2}=15^{\circ} \mathrm{C}$ so $\mathrm{T}_{2}>\mathrm{T}_{1 \mathrm{a}}$
$=>\mathrm{P}_{2}>\mathrm{P}_{1}$

If the piston didn't reach the stops yet, the pressure would have remained constant at 150 kPa and by using 150 kPa and $15^{\circ} \mathrm{C}$, we would have obtained the right specific volume

Problem 4.86

Process: $\mathrm{P}=$ constant :
Boundary work: $\delta \mathrm{W}=\mathrm{PdV}=>\mathrm{W}=\mathrm{P} \Delta \mathrm{V}$
Assuming ideal gas behavior for air
$\mathrm{V}_{2}=\mathrm{V}_{1} \times\left(\mathrm{T}_{2} / \mathrm{T}_{1}\right)=0.1 \times(600 / 300)=0.2 \mathrm{~m}^{3}$
$\dot{W}=\mathrm{P} \Delta \mathrm{V} / \Delta \mathrm{t}=300 \times(0.2-0.1) / 30 \mathrm{kPa} \mathrm{m}^{3} / \mathrm{s}=\mathbf{1} \mathbf{~ k W}$

Problem 4.90

Steady conduction through the bottom of the steel pot.
Assume the inside surface is at the liquid water temperature.
$\dot{Q}=\mathrm{kA} \Delta \mathrm{T} / \Delta \mathrm{x} \Rightarrow \Delta \mathrm{T}=\dot{Q} \Delta \mathrm{x} / \mathrm{kA}$
$\Delta \mathrm{T}=250 \mathrm{~W} \times 0.005 \mathrm{~m} /\left(50 \mathrm{~W} / \mathrm{m}-\mathrm{K} \times \pi / 4 \times 0.22 \mathrm{~m}^{2}\right)=0.796 \mathrm{~K}$
$\mathrm{T}=15+0.796 \cong \mathbf{1 5 . 8 ^ { \circ }} \mathbf{C}$

Problem 4.103

State 1: $\mathrm{v}_{1}=\mathrm{V} / \mathrm{m}=0.2 / 2=0.1 \mathrm{~m}^{3} / \mathrm{kg}$
Process: $1 \rightarrow 2 \rightarrow 3$ or $1 \rightarrow 3^{\prime}$

State at stops: 2 or 2'
$\mathrm{V}_{2}=\mathrm{V}_{\text {stop }} / \mathrm{m}=0.4 \mathrm{~m}^{3} / \mathrm{kg} \& \mathrm{~T}_{2}=600^{\circ} \mathrm{C}$
Table B.1.3 $\Rightarrow \mathrm{P}_{\text {stop }}=1 \mathrm{MPa}<\mathrm{P}_{3}$ since $\mathrm{P}_{\text {stop }}<\mathrm{P}$ then the process is as $1 \rightarrow 2 \rightarrow 3$

State 3: $\mathrm{P}_{3}=1.2 \mathrm{MPa}, \mathrm{v}_{3}=\mathrm{v}_{2}=0.4 \mathrm{~m}^{3} / \mathrm{kg} \Rightarrow \mathrm{T}_{3} \cong 770^{\circ} \mathrm{C}$
$\mathrm{W}_{13}=\mathrm{W}_{12}+\mathrm{W}_{23}=$
$\mathrm{W}_{12}=0.5\left(\mathrm{P}_{1}+\mathrm{P}_{2}\right)\left(\mathrm{V}_{2}-\mathrm{V}_{1}\right)=0.5(100+1000) \mathrm{kPa} \times(0.8-0.2) \mathrm{m}^{3}$ (this is only possible because the spring is linear and the force it applies, induces a pressure that varies linearly with the displacement and hence the swept volume
$\mathrm{W}_{23}=0$ (constant volume)
Hence $W_{13}=\mathbf{3 3 0} \mathbf{~ k J}$

Problem 4.109

The process equation and T determines state 2 . Use ideal gas law to say
$P_{2}=P_{1}\left(\frac{T_{1}}{T_{2}}\right)^{\frac{n}{n-1}}=100\left(\frac{340}{300}\right)^{\frac{1.1}{0.1}}=396 \mathrm{kPa}$
$V_{2}=V_{1}\left(\frac{P_{1}}{P_{2}}\right)^{\frac{1}{n}}=0.2(100 / 396) 1 / 1.1=0.0572 \mathrm{~m}^{3}$
For propane Table A.2: $\mathrm{Tc}=370 \mathrm{~K}, \mathrm{Pc}=4260 \mathrm{kPa}$, Figure D. 1 gives Z .
$\operatorname{Tr}_{1}=0.81, \operatorname{Pr}_{1}=0.023 \Rightarrow \mathrm{Z}_{1}=0.98$
$\operatorname{Tr}_{2}=0.92, \operatorname{Pr}_{2}=0.093=>\mathrm{Z}_{2}=0.95$
Ideal gas model OK for both states, work is integrated to give:

$$
{ }_{1} \mathrm{~W}_{2}=\int \mathrm{PdV}=\frac{\mathrm{P}_{2} \mathrm{~V}_{2}-\mathrm{P}_{1} \mathrm{~V}_{1}}{1-\mathrm{n}}=\frac{(396 \times 0.0572)-(100 \times 0.2)}{1-1.1} \mathrm{kPa} \mathrm{~m}^{3}
$$

$W_{12}=-26.7 \mathbf{k J}$

