Chapter 03 Solved Problems

Problem 3.23

a) $\mathrm{H}_{2} \mathrm{O} \quad \mathrm{T}=260^{\circ} \mathrm{C} P=5 \mathrm{MPa}$ Table B.1.1 or B.1.2
B.1.1 For given T: Psat $=4.689 \mathrm{MPa}$
P > Psat => compressed liquid
B.1.2 For given P : Tsat $=264^{\circ} \mathrm{C}$

T < Tsat => compressed liquid
b) $\mathrm{H}_{2} \mathrm{O} \quad \mathrm{T}=-2^{\circ} \mathrm{C} P=100 \mathrm{kPa}$ Table B.1. $1 \mathrm{~T}<$ Ttriple point Table B.1.5 at $-2^{\circ} \mathrm{C}$: Psat $=0.518 \mathrm{kPa}$ since $\mathrm{P}>$ Psat $=>$ compressed solid

Problem 3.24

a) Water $100^{\circ} \mathrm{C}, 500 \mathrm{kPa}$

From Table B.1.1 Psat $\left(100^{\circ} \mathrm{C}\right)=101.3 \mathrm{kPa}$
$500 \mathrm{kPa}>$ Psat then it is compressed liquid
OR from Table B.1.2 Tsat(500 kPa) $=152^{\circ} \mathrm{C}$
$100^{\circ} \mathrm{C}<$ Tsat then it is subcooled liquid = compressed liquid
b) Ammonia (NH3) $-10^{\circ} \mathrm{C}, 150 \mathrm{kPa}$

Table B.2.1: $\mathrm{P}<\operatorname{Psat}\left(-10^{\circ} \mathrm{C}\right)=291 \mathrm{kPa}$ Superheated vapor
c) R-410a $\quad 0^{\circ} \mathrm{C}, 350 \mathrm{kPa}$

Table B.4.1: $\mathrm{P}<\operatorname{Psat}\left(0^{\circ} \mathrm{C}\right)=799 \mathrm{kPa}$ Superheated vapor.

Problem 3.25

a) $\mathrm{P}=10 \mathrm{MPa}, \mathrm{v}=0.003 \mathrm{~m}^{3} / \mathrm{kg}$
B.1.2 at 10 MPa
$\mathrm{v}_{\mathrm{f}}=0.001452 ; \mathrm{v}_{\mathrm{g}}=0.01803 \mathrm{~m}^{3} / \mathrm{kg}$,
$=>\mathrm{Vf}_{\mathrm{f}}<\mathrm{V}<\mathrm{V}_{\mathrm{g}}=>$ so mixture of liquid and vapor.
b) $1 \mathrm{MPa}, 190^{\circ} \mathrm{C}$: Only one of the two look-ups is needed
$\mathrm{P}<$ Psat $=1254.4 \mathrm{kPa}$ so it is superheated vapor
$\mathrm{T}>$ Tsat $=179.91^{\circ} \mathrm{C}$ so it is superheated vapor
c) $200^{\circ} \mathrm{C}, 0.1 \mathrm{~m}^{3} / \mathrm{kg}:$ B. 1.1
$\mathrm{v}_{\mathrm{f}}=0.001156 \mathrm{~m}^{3} / \mathrm{kg} ; \mathrm{v}_{\mathrm{g}}=0.12736 \mathrm{~m}^{3} / \mathrm{kg}$,
$=>\mathrm{v}_{\mathrm{f}}<\mathrm{v}<\mathrm{v}_{\mathrm{g}}=>$ so mixture of liquid and vapor.
d) $10 \mathrm{kPa}, 10^{\circ} \mathrm{C}$: Only one of the two look-ups is needed
B.1.1: $\mathrm{P}>\mathrm{Pg}=1.2276 \mathrm{kPa}$ so compressed liquid
B.1.2: $\mathrm{T}<\mathrm{Tsat}=45.8^{\circ} \mathrm{C}$ so compressed liquid

Problem 3.33

$\mathrm{P}[\mathrm{kPa}]$	$\mathrm{T}\left[{ }^{\circ} \mathrm{C}\right]$	$\mathrm{v}\left[\mathrm{m}^{3} / \mathrm{kg}\right]$	x
$\mathrm{a)} 500$	20	$\mathbf{0 . 0 0 1 0 0 2}$	Undefined
b) 500	$\mathbf{1 5 1 . 8 6}$	0.20	$\mathbf{0 . 5 3 2}$
c) 1400	200	$\mathbf{0 . 1 4 3 0 2}$	Undefined
d) $\mathbf{8 5 8 1}$	300	$\mathbf{0 . 0 1 7 6 2}$	0.8

a) Table B.1.1 $\mathrm{P}>$ Psat so it is compressed liquid $=>$ Table B.1.4
b) Table B.1.2 $\mathrm{vf}<\mathrm{v}<\mathrm{vg}$ so two phase $\mathrm{L}+\mathrm{V}$
$\mathrm{x}=\left(\mathrm{v}-\mathrm{v}_{\mathrm{f}}\right) / \mathrm{v}_{\mathrm{fg}}=(0.2-0.001093) / 0.3738=0.532$
$\mathrm{T}=\mathrm{Tsat}=151.86^{\circ} \mathrm{C}$
c) Only one of the two look-up is needed

Table B.1.1 $200^{\circ} \mathrm{C} \quad \mathrm{P}$ < Psat $=$ => superheated vapor
Table B.1.2 $1400 \mathrm{kPa} \quad \mathrm{T}>\mathrm{Tsat}=195^{\circ} \mathrm{C}$
Table B.1.3 sub-table for 1400 kPa gives the state properties
d) Table B.1.1 since quality is given it is two-phase
$\mathrm{v}=\mathrm{vf}_{\mathrm{f}}+\mathrm{x} \times \mathrm{vfg}_{\mathrm{fg}}=0.001404+0.8 \times 0.02027=0.01762 \mathrm{~m}^{3} / \mathrm{kg}$

Problem 3.35

a) $-15^{\circ} \mathrm{C}, 500 \mathrm{kPa}$

Table B.4.1: $\mathrm{P}>$ Psat $=480.4 \mathrm{kPa}$, so compressed liquid.
$\mathrm{v} \approx \mathrm{v}_{\mathrm{f}}=0.000815 \mathrm{~m}^{3} / \mathrm{kg}$
b) $20^{\circ} \mathrm{C}, 1000 \mathrm{kPa}$

Table B.4.1: P < Psat = 1444 kPa , so superheated vapor
Table B.4.2: $\mathrm{v}=0.02838 \mathrm{~m}^{3} / \mathrm{kg}$
c) $20^{\circ} \mathrm{C}$, quality 25%

Table B.4.1: $\mathrm{v}_{\mathrm{f}}=0.000815 \mathrm{~m}^{3} / \mathrm{kg}, \mathrm{v}_{\mathrm{fg}}=0.01666 \mathrm{~m}^{3} / \mathrm{kg}$ so
$\mathrm{v}=\mathrm{vf}_{\mathrm{f}}+\mathrm{x}_{\mathrm{ffg}}=0.000815+0.25 \times 0.01666=0.00498 \mathrm{~m}^{3} / \mathrm{kg}$

Problem 3.40

You want a pot of water to boil at $105^{\circ} \mathrm{C}$. How heavy a lid should you put on the 15 cm diameter pot when $\mathrm{Patm}=101 \mathrm{kPa}$?
Table B.1.1 at $105^{\circ} \mathrm{C}$: Psat $=120.8 \mathrm{kPa}$
$A=\frac{\pi D^{2}}{4}=0.01767 \mathrm{~m}^{2}$
Fnet $=($ Psat - Patm $) A=(120.8-101) \mathrm{kPa} \times 0.01767 \mathrm{~m}^{2}=0.3498 \mathrm{kN}=350 \mathrm{~N}$
Fnet $=m_{\text {LID }} \mathrm{g}$
$\mathrm{m}_{\text {LID }}=$ Fnet $/ \mathrm{g}=350 / 9.807=35.7 \mathrm{~kg}$

Problem 3.41

State 1 from Table B.1.1 at $120^{\circ} \mathrm{C}$
$\mathrm{v}=\mathrm{v}_{\mathrm{f}}+\mathrm{x} \mathrm{v}_{\mathrm{fg}}=0.001060+0.25 \times 0.8908=0.22376 \mathrm{~m}^{3} / \mathrm{kg}$
State 2 has same v at $140^{\circ} \mathrm{C}$ also from Table B.1.1
$\mathrm{x}=\left(\mathrm{v}-\mathrm{v}_{\mathrm{f}}\right) / \mathrm{v}_{\mathrm{fg}}=(0.22376-0.00108) / 0.50777=0.4385$
$\mathrm{P}=$ Psat $=361.3 \mathrm{kPa}$

Problem 3.43

Saturated water vapor at 200 kPa is in a constant pressure piston cylinder. At this state the piston is 0.1 m from the cylinder bottom.

State 1: B $1.2 \mathrm{v}_{1}=\mathrm{v}_{\mathrm{g}}(200 \mathrm{kPa})=0.8857 \mathrm{~m}^{3} / \mathrm{kg}, \mathrm{T}_{1}=120.2^{\circ} \mathrm{C}$
Process: $\mathrm{P}=$ constant $=200 \mathrm{kPa}$
State 2: $\mathrm{P}, \mathrm{v}_{2}=\mathrm{v}_{1} / 2=0.44285 \mathrm{~m}^{3} / \mathrm{kg}$
Table B.1.2 $\mathrm{v}_{2}<\mathrm{v}_{\mathrm{g}}$ so two phase $\mathrm{T}_{2}=\mathrm{Tsat}=120.2^{\circ} \mathrm{C}$
Height is proportional to volume
$\mathrm{h}_{2}=\mathrm{h}_{1} \times \mathrm{v}_{2} / \mathrm{v}_{1}=0.1 \times 0.5=0.05 \mathrm{~m}$

Problem 3.50

Control volume: both tanks. Constant total volume and mass process.

State A1: $(\mathrm{P}, \mathrm{v}) \mathrm{m}_{\mathrm{A}}=\mathrm{V}_{\mathrm{A}} / \mathrm{v}_{\mathrm{A}}=1 / 0.5=2 \mathrm{~kg}$
State B1: (P, T) Table B.1.3 $\mathrm{V}_{\mathrm{B}}=0.6173 \mathrm{~m}^{3} / \mathrm{kg}$
$\Rightarrow V_{B}=\mathrm{m}_{\mathrm{B}} \mathrm{V}_{\mathrm{B}}=3.5 \times 0.6173=2.1606 \mathrm{~m}^{3}$
Final state: $\mathrm{m}_{\text {tot }}=\mathrm{m}_{\mathrm{A}}+\mathrm{m}_{\mathrm{B}}=5.5 \mathrm{~kg}$
$V_{\text {tot }}=V_{A}+V_{B}=3.1606 \mathrm{~m}^{3}$
$\mathrm{v}_{2}=\mathrm{V}_{\text {tot }} / \mathrm{m}_{\text {tot }}=0.5746 \mathrm{~m}^{3} / \mathrm{kg}$

Problem 3.53

Initial state: $\mathrm{v}=7.6707 \mathrm{~m}^{3} / \mathrm{kg}$ from table B.1.1
Final state: $v=1.10 \times v_{g}=1.1 \times 7.6707=8.4378 \mathrm{~m}^{3} / \mathrm{kg}$
Interpolate at $60^{\circ} \mathrm{C}$ between saturated $(\mathrm{P}=19.94 \mathrm{kPa}$) and superheated vapor $\mathrm{P}=10 \mathrm{kPa}$ in Tables B.1.1 and B.1.3

$$
P \cong 19.941+(10-19.941) \times(8.4378-7.67071) /(5.3345-7.6707)=18.9 \mathrm{kPa}
$$

Problem 3.70

The mass comes from knowledge of state 1 and ideal gas law
$\mathrm{m}=\mathrm{P}_{1} \mathrm{~V}_{1} / \mathrm{RT}_{1}=1000 \mathrm{kPa} \times 0.1 \mathrm{~m}^{3} /(0.287 \mathrm{~kJ} / \mathrm{kgK} \times(227+273) \mathrm{K})=0.697 \mathrm{~kg}$
The final pressure is found from the ideal gas law written for state 1 and state 2 and then eliminate the mass, gas constant and volume $\left(V_{2}=V_{1}\right)$ between the equations
$\mathrm{P}_{1} \mathrm{~V}_{1}=\mathrm{mRT} \mathrm{R}_{1}$ and $\mathrm{P}_{2} \mathrm{~V}_{2}=\mathrm{mRT}_{2}$
$\mathrm{P}_{2}=\mathrm{P}_{1} \times \mathrm{T}_{2} / \mathrm{T} 1=1000 \times 1500500=\mathbf{3 0 0 0} \mathbf{~ k P a}$

Problem 3.72

$\mathrm{m}=\mathrm{PV} / \mathrm{RT}=600 \times 1 /(0.2968 \times 400)=5.054 \mathrm{~kg}$
$\mathrm{m}_{2}=\mathrm{m}-0.5=4.554 \mathrm{~kg}$
$\mathrm{P}_{2}=\mathrm{m}_{2} \mathrm{RT}_{2} / \mathrm{V}=4.554 \times 0.2968 \times 375 / 1=\mathbf{5 0 6 . 9} \mathbf{~ k P a}$

Problem 3.111

Real gas behavior: P = 1000 kPa from Table B.4.2
Ideal gas constant: $\mathrm{R}=\bar{R} / \mathrm{M}=8.31451 / 72.585=0.1146 \mathrm{~kJ} / \mathrm{kg} \mathrm{K}$
$\mathrm{P}=\mathrm{RT} / \mathrm{v}=0.1146 \times(273.15+60) / 0.0347=1100 \mathrm{kPa}$ which is 10% too high
Generalized chart Fig D. 1 and critical properties from A.2:
$\mathrm{Tr}=333.2 /(273.15+71.3)=0.967 ; \mathrm{Pc}=4901 \mathrm{kPa}$
Assume $\mathrm{P}=1000 \mathrm{kPa}=>\mathrm{Pr}=0.204=>\mathrm{Z} \cong 0.92$
$\mathrm{v}=\mathrm{ZRT} / \mathrm{P}=0.92 \times 0.1146 \times 333.15 / 1000=0.03512$ too high
Assume $\mathrm{P}=1050 \mathrm{kPa}=>\mathrm{Pr}=0.214=>\mathrm{Z} \cong 0.915$
$\mathrm{v}=\mathrm{ZRT} / \mathrm{P}=0.915 \times 0.1146 \times 333.15 / 1050=0.03327$ too low
$\mathrm{P}=1000+(1050-1000) \times(0.03470-0.03512) /(0.03327-0.03512)$
$\mathrm{P}=1011 \mathrm{kPa} 1.1 \%$ high

