Quiz 1

- This is an open book 90 minutes exam.
- It is recommended that you read the whole exam before you start solving.
- Make sure that the units are consistent.
- Write your name and section number on both the question and answer sheets.
- Clearly identify your control mass / control volume.
- State any assumptions you need and provide a convincing justification.

Problem 1 (40 points)
A rigid cylinder of volume $1 \mathrm{~m}^{3}$ contains 1 kg of a saturated liquid+vapor water mixture at 100 C . The water undergoes a process with a final state of saturated vapor. The cylinder is fitted with a piston which is either free to move or held stationary, depending on the process. For each of the processes (a), (b) and (c):
(1) Find the initial and final states, work produced by and heat transferred into water,
(2) Sketch the process on a $p-v$ and $T-v$ diagrams,
(3) Explain whether the piston is free to move or held stationary.
(a) An isobaric process.
(b) An isothermal process.
(c) An isometric process.

depending on process, piston is either free to move or held stationary

Final State: saturated vapor

Figure 1: Schematic for problem 1.

Problem 2 (30 points)
A well-insulated rigid tank contains 5 kg of saturated liquid+vapor mixture of water at 100 kPa at an initial unknown quality, x_{1}. An electric resistor, placed in the tank, is connected to a $110-\mathrm{V}$ source and a current of 8 A flows through the resistor when the switch is turned on. It took 10 minutes to completely vaporize the liquid. Determine the following:
(a) The volume of the tank in m^{3}.
(b) The initial quality x_{1}
(c) Sketch the process on a p-v diagram

Note that when electric current I flows through a resistor, it dissipates heat at a rate of $I V$ (Watts), where V is the potential difference across the resistor.

Note: This problem may require an iterative solution. Do not carry out more than two iterations.

Figure 2: Schematic for problem 2.

Problem 3 (30 points)
The rigid container shown in Figure 1 consists of two air compartments separated by a piston of area $A=250 \mathrm{~cm}^{2}$. The piston conducts heat but experiences no friction with the container walls. Compartment B is thermally insulated from the surrounding. The piston is supported by linear spring with a spring constant $k=100 \mathrm{kN} / \mathrm{m}$. Initially the temperature in both compartments is 300 K and the volumes of the two compartments are $V_{A 1}=4$ liters and $V_{B 1}=6$ liters. The mass of air in compartment A is 20 grams and that in compartment B is 10 grams. Air is assumed to behave as an ideal gas with $c_{v}=0.72 \mathrm{~kJ} / \mathrm{kg} . \mathrm{K}$ and $R=0.287 \mathrm{~kJ} / \mathrm{kg} . \mathrm{K}$.
(a) Find the initial air pressure in each compartment.
(b) Is the spring in the initial state under tension or compression? Find $l_{1}-l_{0}$ where l_{1} is length of spring at the initial state and l_{0} is its length when it is under no stress.

Heat is slowly added to compartment A (while compartment B is kept insulated) until the final volume of air in compartment B is $V_{B 2}=5.5$ liters.
(c) Find final temperature and pressure in each compartment, $T_{A 2}, p_{A 2}, T_{B 2}, p_{B 2}$.
(d) Find the work produced by air in both compartments $W_{\overrightarrow{A+B}}$ and the heat added Q_{A}^{\leftarrow}.

Figure 3: Schematic for problem 3.

Problem 1: Solution

Initial state: $T_{1}=100 C, v_{1}=V_{1} / m=1 \mathrm{~m}^{3} / \mathrm{kg}$. From tables $p_{1}=1 \mathrm{~atm}, v_{f}=$ $0.0010435 \mathrm{~m}^{3} / \mathrm{kg}, v_{g}=1.673 \mathrm{~m}^{3} / \mathrm{kg}$, so that $x_{1}=\left(v-v_{f}\right) / v_{f g}=0.597$. We can then get $u_{1}=u_{f}+x u_{f g}=418.94+0.597(2506.5-418.94)=1665.2 \mathrm{~kJ} / \mathrm{kg}$
(a) For an isobaric process, $p=p_{1}$, and in particular the final state is saturated vapor at 100 C and 1 atm , so that $v_{2}=v_{g}=1.673 \mathrm{~m}^{3} / \mathrm{kg}$. The work done is $W^{\rightarrow}=$ $p\left(V_{2}-V_{1}\right)=p\left(m v_{2}-V_{1}\right)=101.4(1.673-1)=68.24 \mathrm{~kJ}$. The change in internal energy is $\Delta U=m\left(u_{2}-u_{1}\right)=1(2506.5-1665.2)=841.28 \mathrm{~kJ}$. The heat added is then $Q^{\leftarrow}=\Delta U+W^{\rightarrow}=909.52 \mathrm{~kJ}$. To maintain a constant pressure, the piston must be free to move with a negligible acceleration.
(b) Same as for part (a). Why?
(c) Final state is saturated vapor with $v_{g}=1 \mathrm{~m}^{3} / \mathrm{kg}$. From the tables $T_{2}=116 \mathrm{C}$, $p_{2}=175 \mathrm{kPa}$ and $u_{2}=2524 \mathrm{~kJ} / \mathrm{kg}$. Since both mass and specific volume are constant during this process, the volume must be constant which requires the piston to be held stationary. The produced work is zero $W \rightarrow=0$ and the heat added to the water is $Q^{\leftarrow}=\Delta U=1(2524-1665.2)=860 \mathrm{~kJ}$.

Problem 2: Solution

Applying first law for control mass consisting of water inside the container, and noting that the volume is constant ($p-v$ work is zero), no heat is transferred across the boundary, and electric work crosses the boundary

$$
\begin{equation*}
\Delta U=W_{\text {electrical }}^{\leftarrow} \tag{1}
\end{equation*}
$$

or

$$
m\left(u_{2}-u_{1}\right)=I V t
$$

Initial state is saturated liquid/vapor at 100 kPa so that $u_{1}=\left(u_{f}+x u_{f g}\right)_{1}=417.36+$ $x_{1}(2506.1-417.3)=417.36+2088.8 x_{1}$. Final state is saturated vapor, with $v_{2}=v_{1}=$ $\left(v_{f}+x v_{f g}\right)_{1}=0.0010431+x_{1}(1.694-0.0010431)=0.001+1.693 x_{1}$. So the first law looks like

$$
5\left(u_{g}\left(v_{g}=0.001+1.693 x_{1}\right)-\left(417.36+2088.8 x_{1}\right)\right)=8(110)(600) / 1000
$$

or

$$
2088.8 x_{1}=\left(u_{g}\left(v_{g}=0.001+1.693 x_{1}\right)-522.96\right.
$$

Let's start with an initial guess $x_{1}=0.5$, then $v_{g}=0.001+1.693 x_{1}=0.8475 \mathrm{~m}^{3} / \mathrm{kg}$, then $u_{2}=2533 \mathrm{~kJ} / \mathrm{kg}$, updating $x_{1}=(2533-552.96) / 2088.8=0.95$. Then $v_{g}=0.001+$ $1.693 x_{1}=1.606 \mathrm{~m}^{3} / \mathrm{kg}$, then $u_{2}=2505 \mathrm{~kJ} / \mathrm{kg}$. Updating $x_{1}=(2505-552.96) / 2088.8=$ 0.934 .

Problem 3: Solution

(a) Ideal gas law $p V=m R T$ for each compartment yields $p_{A 1}=430.5 \mathrm{kPa}$ and $p_{B 1}=$ 143.5 kPa .
(b) Force balance on the piston, assuming zero acceleration, yields

$$
p_{A}=p_{B}+\frac{k\left(l_{0}-l\right)}{A}
$$

so that $l_{0}-l=A\left(p_{A}-p_{B}\right) / k$ which for the initial state gives $l_{0}-l=7.2 \mathrm{~cm}$. Since $l=V_{B 1} / A$, we get $l_{0}=31.2 \mathrm{~cm}$.
(c) Force balance on the piston yields

$$
\begin{equation*}
d p_{A}=d p_{B}-\frac{k}{A^{2}} d V_{B} \Rightarrow\left(p_{A}-p_{B}\right)=\left(p_{A}-p_{B}\right)_{1}-\frac{k}{A^{2}}\left(V_{B}-V_{B 1}\right) \tag{2}
\end{equation*}
$$

First law for compartments A and B respectively

$$
\begin{aligned}
& \Delta U_{A}=Q_{A}^{\leftarrow}-W_{A}^{\rightarrow} \\
& \Delta U_{B}=-W_{B}^{\overrightarrow{ }}
\end{aligned}
$$

or

$$
\begin{aligned}
& m_{A} c_{v}\left(T_{2}-T_{1}\right)=Q_{A}^{\leftarrow}-\int_{V_{A 1}}^{V_{A 2}} p_{A} d V_{A} \\
& m_{B} c_{v}\left(T_{2}-T_{1}\right)=-\int_{V_{B 1}}^{V_{B 2}} p_{B} d V_{B}
\end{aligned}
$$

Noting that $d V_{A}=-d V_{B}$, and adding the two equations, we get

$$
\left(m_{A}+m_{B}\right) c_{v}\left(T_{2}-T_{1}\right)=Q_{A}^{\leftarrow}+\int_{V_{B 1}}^{V_{B 2}}\left(p_{A}-p_{B}\right) d V_{B}
$$

So the net work output from air in both compartments is

$$
\begin{aligned}
W_{A+B} & =-\int_{V_{B 1}}^{V_{B 2}}\left(p_{A}-p_{B}\right) d V_{B} \\
& =-\int_{V_{B 1}}^{V_{B 2}}\left(\left(p_{A}-p_{B}\right)_{1}-\frac{k}{A^{2}}\left(V_{B}-V_{B 1}\right)\right) d V_{B} \\
& =0.1235 \mathrm{~kJ}
\end{aligned}
$$

Ideal gas law at state 2,

$$
R T_{2}=\frac{p_{A 2} V_{A 2}}{m_{A}}=\frac{p_{B 2} V_{B 2}}{m_{B}} \Rightarrow \frac{p_{A 2}\left(V-V_{B 2}\right)}{m_{A}}=\frac{p_{B 2} V_{B 2}}{m_{B}} \Rightarrow p_{A 2}=p_{B 2} \frac{V_{B 2}}{V-V_{B 2}} \frac{m_{A}}{m_{B}}
$$

leading to $p_{A 2}=2.444 p_{B 2}$. Substituting in Equation (2),

$$
p_{A 2}-p_{B 2}=\left(p_{A}-p_{B}\right)_{1}-\frac{k}{A^{2}}\left(V_{B 2}-V_{B 1}\right)=367 \mathrm{kPa}
$$

resulting in $p_{B 2}=254 \mathrm{kPa}$ and $p_{A 2}=621 \mathrm{kPa}$. Using ideal gas law, we get $T_{2}=487 \mathrm{~K}$.
Finally first law, yields

$$
Q_{A}^{\leftarrow}=\left(m_{A}+m_{B}\right) c_{v}\left(T_{2}-T_{1}\right)+W_{A+B}=4.16 \mathrm{~kJ}
$$

