American University of Beirut

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING EECE 311 – Electronic Circuits (Sections 1 & 2) Spring 2008

HOMEWORK 1

Due Friday February 29, 2008 at 1:00 PM

Problem 1.

Refer to Figure 6.4 in the textbook.

Using $V_{DD} = 1.8$ V and a pair of identical MOSFETs, design the current source in the figure to provide an output current of 50 μ A, nominal. The nominal output current is obtained when the $V_{O} = V_{GS}$.

The output voltage is required to operate in the range 0.3 V to 1.8 V, and it is also required that the change in the output current over this range be limited to 3% of the nominal value.

a) Find the required values of *R* and all device dimensions (*W* and *L*). The technology parameters are: $k'_n = 360 \ \mu \text{A/V}^2$, $V'_{An} = 20 \ \text{V/}\mu\text{m}$, and $V_{tn} = 0.55 \ \text{V}$.

Do not neglect channel-length modulation in your design.

b) Using PSpice, verify that the nominal value of I_0 is obtained at $V_0 = V_{GS}$, and that the change in I_0 is limited to 3% of its nominal value, when V_0 changes from 0.3 V to V_{DD} .

Problem 2.

Refer to Figure 6.18 (a) in the textbook.

A common-source CMOS amplifier similar to the one shown in Fig. 6.18 (a) in the textbook uses a supply voltage V_{DD} of 1.8 Volts, and a bias current I_{REF} of 15 μ A. The MOSFET parameters are: W/L = 40 for Q_2 , W/L = 5 for Q_3 , $k'_n = 360 \ \mu$ A/V², $k'_p = 90 \ \mu$ A/V², $V_{An} = 1/\lambda_n = |V_{Ap}| = 1/|\lambda_p| = 6 \text{ V}$, $V_{tn} = 0.55 \text{ V}$, and $V_{tp} = -0.5 \text{ V}$.

Do not neglect channel-length modulation in DC analysis.

a) Find the value of V_{SG} of Q_2 .

b) Find the drain current of Q_1 when $v_0 = V_{DD}/2$.

c) Find *W/L* for Q_I if the drain current found in part (b) corresponds to $v_I = V_{DD}/2$ and $v_O = V_{DD}/2$.

d) Find the value of v_0 and the corresponding value of v_1 at which Q_2 leaves the saturation region.

e) Find the value of v_0 and the corresponding value of v_1 at which Q_1 leaves the saturation region.

f) Find the value of the small-signal voltage gain v_o/v_i around the DC bias point ($V_I = V_{DD}/2$, $V_O = V_{DD}/2$)

g) Find the value of the output resistance R_o .

h) Simulate the circuit in PSpice to derive the voltage transfer curve (v_0 versus v_1) when v_1 varies between 0 V and 1.8 V. This is done as follows:

vi input_node 0 DC 0V .DC vi 0V 1.8V 0.001V

where input_node is the number you assigned to the input node. The .DC statement sweeps v_I from 0 V to 1.8 V in 1 mV steps.

Using the Probe trace of $V(\text{output_node})$, where output_node is the number you assigned to the output node, note that for a range of values of v_I , the gain $|dv_O/dv_I|$ is large and approximately constant. What is this range of values of v_I ? What is the corresponding range of values of v_O ? How do the values compare with the results of parts (d) and (e)?

i) Bias the transistor at ($V_I = V_{DD}/2$, $V_O = V_{DD}/2$), and apply a sinusoidal input with an amplitude equal to 10 mV. Run a transient analysis using such a sinusoidal source (at a frequency of 1 KHz):

vi input_node 0 SIN(DC_bias Amplitude 1KHz) .Tran 5us 8ms 5ms 5us DC_bias is $V_{DD}/2$ and Amplitude is 10 mV.

i.1) Verify, from the Probe plots of v_0 and v_l , that the AC gain is close to the value calculated in part (f).

i.2) Now change Amplitude to 50mV, and run the transient analysis. How do you explain the shape of the output waveform?

j) Find the output resistance of the amplifier. This is done in SPICE as follows: Set the input source v_I to $V_{DD}/2$ (this is a zero-volt AC input source!), and connect an AC voltage source v_x to the output node via a 1 F capacitor (this capacitance is needed in order not to disrupt the DC bias, and results in a negligible impedance of 0.16 m Ω at the AC frequency of 1 KHz):

vx test_node 0 AC 1 cx test_node output_node 1 where test_node is the number you assigned to the test node to which v_x is connected.

Run an AC analysis at 1KHz using:

```
.AC LIN 1 1KHz 1KHz
.PRINT AC i(vx)
```

The .PRINT statement will print the value of i_x . After running PSpice, click on View -> Output File then scroll down to "**** AC ANALYSIS "to read the value of $i_x = I(vx)$.

Calculate the value of the output resistance from this value of i_x . Compare with the value calculated in part (g).

Problem 3.

a) A direct-coupled amplifier has a low-frequency gain of 32 dB, poles at 11 KHz, 48 KHz, and 220 KHz, a zero at 96 KHz, and two more zeros at infinity. Express the amplifier gain

function in the form:
$$A_{M} \frac{(1+\frac{s}{\omega_{z1}})(1+\frac{s}{\omega_{z2}})\cdots(1+\frac{s}{\omega_{zn}})}{(1+\frac{s}{\omega_{p1}})(1+\frac{s}{\omega_{p2}})\cdots(1+\frac{s}{\omega_{pn}})}.$$

b) Sketch the Bode plot for the magnitude of the gain.

c) Calculate the 3-dB frequency f_H for this amplifier using:

i) the dominant pole approximation

ii) the definition of the 3-dB frequency (i.e. find the exact value of f_H).

What is the error (in %) in the value of f_H due to the dominant pole approximation?

d) Calculate the frequency f_t at which the gain of the amplifier becomes unity (or 0 dB) using: i) the dominant pole approximation

ii) the definition of f_t . Comment on the usefulness of the dominant pole approximation in estimating f_t .

e) Verify using PSpice the values of f_H and f_t calculated above. Use

```
Homework 1 Problem 3
.PARAM pi=3.141593
Vin 1 0 AC 1
Rin 1 0 1
Eamp 2 0 Laplace {V(1)}={ your gain function here }
Rout 2 0 1
.AC DEC 20 1Hz 1000KHz
.Probe
.End
```

and plot dB(v(2)).