American University of Beirut

Department of Electrical and Computer Engineering
EECE 311 - Electronic Circuits (Sections 1 \& 2)
Spring 2008

HOMEWORK 1

Due Friday February 29, 2008 at 1:00 PM

Problem 1.

Refer to Figure 6.4 in the textbook.
Using $V_{\mathrm{DD}}=1.8 \mathrm{~V}$ and a pair of identical MOSFETs, design the current source in the figure to provide an output current of $50 \mu \mathrm{~A}$, nominal. The nominal output current is obtained when the $V_{\mathrm{O}}=V_{\mathrm{GS}}$.
The output voltage is required to operate in the range 0.3 V to 1.8 V , and it is also required that the change in the output current over this range be limited to 3% of the nominal value.
a) Find the required values of R and all device dimensions (W and L). The technology parameters are: $k_{n}^{\prime}=360 \mu \mathrm{~A} / \mathrm{V}^{2}, V^{\prime}{ }_{A n}=20 \mathrm{~V} / \mu \mathrm{m}$, and $V_{t n}=0.55 \mathrm{~V}$.

Do not neglect channel-length modulation in your design.
b) Using PSpice, verify that the nominal value of I_{O} is obtained at $V_{\mathrm{O}}=V_{\mathrm{GS}}$, and that the change in I_{O} is limited to 3% of its nominal value, when V_{O} changes from 0.3 V to $V_{D D}$.

Problem 2.

Refer to Figure 6.18 (a) in the textbook.
A common-source CMOS amplifier similar to the one shown in Fig. 6.18 (a) in the textbook uses a supply voltage $V_{D D}$ of 1.8 Volts, and a bias current $I_{R E F}$ of $15 \mu \mathrm{~A}$. The MOSFET parameters are: $W / L=40$ for $Q_{2}, W / L=5$ for $Q_{3}, k_{n}^{\prime}=360 \mu \mathrm{~A} / \mathrm{V}^{2}, k_{p}^{\prime}=90 \mu \mathrm{~A} / \mathrm{V}^{2}, V_{A n}=1 / \lambda_{n}$ $=\left|V_{\text {Ap }}\right|=1 /\left|\lambda_{p}\right|=6 \mathrm{~V}, V_{t n}=0.55 \mathrm{~V}$, and $V_{t p}=-0.5 \mathrm{~V}$.

Do not neglect channel-length modulation in DC analysis.
a) Find the value of $V_{S G}$ of Q_{2}.
b) Find the drain current of Q_{1} when $v_{O}=V_{D D} / 2$.
c) Find W / L for Q_{1} if the drain current found in part (b) corresponds to $v_{I}=V_{D D} / 2$ and $v_{O}=$ $V_{D D} / 2$.
d) Find the value of v_{O} and the corresponding value of v_{I} at which Q_{2} leaves the saturation region.
e) Find the value of v_{O} and the corresponding value of v_{I} at which Q_{1} leaves the saturation region.
f) Find the value of the small-signal voltage gain v_{o} / v_{i} around the DC bias point ($V_{I}=V_{D D} / 2$, $V_{O}=V_{D D} / 2$)
g) Find the value of the output resistance R_{o}.
h) Simulate the circuit in PSpice to derive the voltage transfer curve (v_{O} versus v_{I}) when v_{I} varies between 0 V and 1.8 V . This is done as follows:
vi input_node 0 DC 0V
.DC vi 0V 1.8V 0.001V
where input_node is the number you assigned to the input node. The . DC statement sweeps v_{I} from 0 V to 1.8 V in 1 mV steps.

Using the Probe trace of V (output_node), where output_node is the number you assigned to the output node, note that for a range of values of v_{I}, the gain $\left|d v_{o} / d v_{I}\right|$ is large and approximately constant. What is this range of values of v_{I} ? What is the corresponding range of values of v_{o} ? How do the values compare with the results of parts (d) and (e)?
i) Bias the transistor at ($V_{I}=V_{D D} / 2, V_{O}=V_{D D} / 2$), and apply a sinusoidal input with an amplitude equal to 10 mV . Run a transient analysis using such a sinusoidal source (at a frequency of 1 KHz):

```
vi input_node 0 SIN(DC_bias Amplitude 1KHz)
```

.Tran 5us 8ms 5ms 5us
DC_bias is $V_{D D} / 2$ and Amplitude is 10 mV .
i.1) Verify, from the Probe plots of v_{O} and v_{I}, that the AC gain is close to the value calculated in part (f).
i.2) Now change Amplitude to 50 mV , and run the transient analysis. How do you explain the shape of the output waveform?
j) Find the output resistance of the amplifier. This is done in SPICE as follows: Set the input source v_{I} to $V_{D D} / 2$ (this is a zero-volt AC input source!), and connect an AC voltage source v_{x} to the output node via a 1 F capacitor (this capacitance is needed in order not to disrupt the DC bias, and results in a negligible impedance of $0.16 \mathrm{~m} \Omega$ at the AC frequency of 1 KHz):

```
vx test_node 0 AC 1
cx test_node output_node 1
```

where test_node is the number you assigned to the test node to which v_{x} is connected.
Run an AC analysis at 1 KHz using:

```
.AC LIN 1 1KHz 1KHz
.PRINT AC i(vx)
```

The .PRINT statement will print the value of i_{x}. After running PSpice, click on View -> Output File then scroll down to "**** AC ANALYSIS " to read the value of $i_{x}=I(v x)$.

Calculate the value of the output resistance from this value of i_{x}. Compare with the value calculated in part (g).

Problem 3.

a) A direct-coupled amplifier has a low-frequency gain of 32 dB , poles at $11 \mathrm{KHz}, 48 \mathrm{KHz}$, and 220 KHz , a zero at 96 KHz , and two more zeros at infinity. Express the amplifier gain
function in the form: $A_{M} \frac{\left(1+\frac{s}{\omega_{z 1}}\right)\left(1+\frac{s}{\omega_{z 2}}\right) \cdots\left(1+\frac{s}{\omega_{z n}}\right)}{\left(1+\frac{s}{\omega_{p 1}}\right)\left(1+\frac{s}{\omega_{p 2}}\right) \cdots\left(1+\frac{s}{\omega_{p n}}\right)}$.
b) Sketch the Bode plot for the magnitude of the gain.
c) Calculate the $3-\mathrm{dB}$ frequency f_{H} for this amplifier using:
i) the dominant pole approximation
ii) the definition of the $3-\mathrm{dB}$ frequency (i.e. find the exact value of f_{H}).

What is the error (in $\%$) in the value of f_{H} due to the dominant pole approximation?
d) Calculate the frequency f_{t} at which the gain of the amplifier becomes unity (or 0 dB) using:
i) the dominant pole approximation
ii) the definition of f_{t}. Comment on the usefulness of the dominant pole approximation in estimating f_{t}.
e) Verify using PSpice the values of f_{H} and f_{t} calculated above. Use

Homework 1 Problem 3
.PARAM pi=3.141593
Vin 10 AC 1
Rin 101
Eamp 20 Laplace $\{\mathrm{V}(1)\}=\{$ your gain function here $\}$
Rout 201
.AC DEC 20 1Hz 1000KHz
. Probe
. End
and plot $\mathrm{dB}(\mathrm{v}(2))$.

