American University of Beirut

Department of Electrical and Computer Engineering
EECE 311 - Electronic Circuits (Sections 1 \& 2)
Spring 2008

HOMEWORK 3

Due Wednesday March 26, 2008 at 1:00 PM

Problem 1.

Consider the common-gate CMOS amplifier shown below. Assume $V_{\mathrm{DD}}=1.8 \mathrm{~V}, I_{\mathrm{REF}}=15 \mu \mathrm{~A}, R_{\mathrm{S}}=50$ Ω, and that the signal source DC component is zero.
The P-channel MOSFETs are matched and have $k_{p}{ }_{p}=100 \mu \mathrm{~A} / \mathrm{V}^{2}, W / L=10, V_{\mathrm{t}}=-0.5 \mathrm{~V}$, and $|\lambda|=0.35 \mathrm{~V}^{-1}$.
The N-channel MOSFET has $k_{n}^{\prime}=350 \mu \mathrm{~A} / \mathrm{V}^{2}, W / L=2, V_{\mathrm{t}}=0.45 \mathrm{~V}, \lambda=0.4 \mathrm{~V}^{-1}$, and $X=0.2$.

a) Find the value of V_{SG} for Q_{3}.
b) Find the value of the drain current of Q_{2} when $v_{o}=V_{\mathrm{DD}} / 2$.
c) Find the required value of $V_{\text {BIAS }}$ needed to obtain $v_{\mathrm{o}}=V_{\mathrm{DD}} / 2$ when $v_{\mathrm{sig}}=0$. Neglect the change in the threshold voltage of Q_{1} due to body effect.
d) Find the values of $g_{\mathrm{m} 1}, r_{\mathrm{o} 1}, r_{\mathrm{o} 2}, R_{\mathrm{in}}$, and R_{out}.
e) Find the voltage gain $v_{0} / v_{\text {sig. }}$.
f) How large can $v_{\text {sig }}$ be (peak-to-peak) while maintaining saturation-mode operation for both Q_{1} and Q_{2} ?
g) Verify, using PSpice, the results of parts (e) and (f). Use a DC sweep for $v_{\text {sig }}$ from -1 V to +1 V in steps of 1 mV . Use the following model for the N-channel MOSFET to account for body effect and to give the required value of X : .model cmosn nmos $\mathrm{kp}=350 \mathrm{u}$ vto=0.45 lambda=0.4 gamma=0.4 phi=1
h) Given that Q_{1} has $C_{\mathrm{gs}}=25 \mathrm{fF}, C_{\mathrm{gd}}=5 \mathrm{fF}, C_{\mathrm{db}}=10 \mathrm{fF}, C_{\mathrm{sb}}=10 \mathrm{fF}$, and that the other capacitances in the circuit may be modeled by a single capacitance connected from the output node to ground, with a value $C_{\mathrm{L}}=50 \mathrm{fF}$, calculate the two amplifier pole frequencies, and the 3dB frequency, assuming that channel-length modulation is negligible.
i) Verify, using PSpice, the results of part (h). Use an AC sweep for $v_{\text {sig }}$ from 1 Hz to 100 MHz , with 10 points per decade. Use the cmosn model of part (g) for the N-channel MOSFET. Make sure to include the capacitors of part (h) in the PSpice netlist. Show the Bode plot of the magniture of $V_{\text {out }}$. Compare the 3-dB frequency obtained from PSpice with the estimate of part (h).

Problem 2.

a) In the circuit of Figure 6.58 in the textbook, find the output current and (approximate) output resistance for the cascode current source. Assume $I_{\text {REF }}=10 \mu \mathrm{~A}, V_{\mathrm{O}}=2.5 \mathrm{~V}, k_{\mathrm{n}}^{\prime}(W / L)=1 \mathrm{~mA} / \mathrm{V}^{2}, V_{\mathrm{t}}=$ 0.5 V , and $V_{\mathrm{A}}=10 \mathrm{~V}$. Do not neglect channel length modulation in the output current analysis.
b) What is the minimum value of V_{O} ?

Problem 3.

Assume $\mathrm{R}=10 \mathrm{~K} \Omega$ in the Wilson current source shown below.

a) What is the output current if $(W / L)_{1}=5,(W / L)_{2}=20,(W / L)_{3}=20, V_{\mathrm{t}}=0.4 \mathrm{~V}$, and $k_{\mathrm{n}}^{\prime}=200 \mu \mathrm{~A} / \mathrm{V}^{2}$? What value of $(W / L)_{4}$ is required to balance the drain voltages of Q_{1} and Q_{2} ?
b) Assuming $\lambda=0.15 \mathrm{~V}^{-1}$, find the output resistance of the current source.
c) What is the minimum value of V_{O} ? For the range $V_{\mathrm{O}}=V_{\text {Omin }}$ to $V_{\mathrm{O}}=3 \mathrm{~V}$, what is the variation in the output current (in $\mu \mathrm{A}$, and as a percentage)?

Problem 4.

a) An inverting op-amp amplifier configuration uses two resistor $R_{1}=5.6 \mathrm{~K} \Omega$ and $R_{2}=560 \mathrm{~K} \Omega$ to achieve a gain of $-100 \mathrm{~V} / \mathrm{V}$. Find the actual closed-loop gain if the open-loop gain is 8000 .
b) The op-amp has, in addition to the finite open-loop gain of 8000 , a unity-gain frequency of 2 MHz . Find the closed-loop gain at a frequency of 15 KHz . If the input voltage is $2 \sin (\omega \mathrm{t}) \mathrm{mV}$, what is the corresponding output voltage?

Problem 5.

An audio amplifier is to be designed to deliver 10 Watts to an 8Ω speaker (load), for a sinusoidal input signal at a frequency of 20 KHz . What must be the slew-rate specification of the amplifier to avoid slewrate distortion?

Problem 6.

a) A differential amplifier has $v_{0}(t)=2400 v_{1}(t)-2391 v_{2}(t)$, where $v_{1}(t)$ and $v_{2}(t)$ are the amplifier inputs. Find the CMRR in dB .

