American University of Beirut

Department of Electrical and Computer Engineering
EECE 311 - Electronic Circuits (Sections 1 \& 2)
Spring 2008

HOMEWORK 4

Due Wednesday April 7, 2008 at 1:00 PM

Problem 1.

Calculate the differential voltage gain $v_{\text {out }} /\left(v_{\text {in } 1}-v_{\mathrm{in} 2}\right)$ in the circuit shown below. Assume perfect symmetry, but do not neglect channel length modulation. Hint: Use the half-circuit technique.

Problem 2.

The circuit shown below should provide a differential gain of $100 \mathrm{~V} / \mathrm{V}$ at a power budget of 1 mW . Assume $V_{\mathrm{A}, \mathrm{n}}=6 \mathrm{~V}, V_{\mathrm{CC}}=2.5 \mathrm{~V}$, and very large β.
a) Find the bias current I_{EE}.
b) Estimate g_{mN} and r_{oN}.
c) Calculate r_{op} and estimate $V_{\mathrm{A}, \mathrm{p}}$.
d) Estimate the input bias current if β_{N} is 200 .
e) Estimate the input offset current if β_{N} is matched to within $+/-2 \%$.

Problem 3.

Design the MOS differential amplifier shown in Figure 7.1 in the textbook for a differential voltage gain of $5 \mathrm{~V} / \mathrm{V}$ and a power dissipation of 1 mW if the overdrive voltage must be at least 150 mV .
Assume $k_{\mathrm{n}}=100 \mu \mathrm{~A} / \mathrm{V}^{2}$ and $V_{\mathrm{DD}}=1.8 \mathrm{~V}$. Neglect channel length modulation.
Find the values of I, R_{D}, and (W / L) for the MOSFETs.

Problem 4.

The differential amplifier shown below must provide a differential gain of $40 \mathrm{~V} / \mathrm{V}$. Assume that all transistors have the same overdrive voltage, and a circuit power budget of 2 mW . Also assume that $V_{\mathrm{A}, \mathrm{n}}=10 \mathrm{~V}, V_{\mathrm{A}, \mathrm{p}}=5 \mathrm{~V}, k_{\mathrm{n}}^{\prime}=100 \mu \mathrm{~A} / \mathrm{V}^{2}, k_{\mathrm{p}}^{\prime}=50 \mu \mathrm{~A} / \mathrm{V}^{2}$, and $V_{\mathrm{DD}}=1.8 \mathrm{~V}$.
a) Design the circuit by calculating the current I_{SS}, the overdrive voltage, and the (W/L) ratios of all MOSFETs.
b) Find the CMRR of the amplifier when the output is single-ended.

Problem 5.

Design the telescopic cascode amplifier shown below, for a differential voltage gain of $600 \mathrm{~V} / \mathrm{V}$ with a power budget of 4 mW . Assume an overdrive voltage of 100 mV for the NMOS devices and 150 mV for the PMOS devices. Using $V_{\mathrm{A}, \mathrm{n}}=10 \mathrm{~V}, k_{\mathrm{n}}^{\prime}=100 \mu \mathrm{~A} / \mathrm{V}^{2}, k_{\mathrm{n}}^{\prime}=50 \mu \mathrm{~A} / \mathrm{V}^{2}$, and $V_{\mathrm{DD}}=1.8 \mathrm{~V}$, determine the required value of $V_{\mathrm{A}, \mathrm{p}}$. Determine (W / L) for MOSFETs M_{1} to M_{8}. Assume that $\mathrm{M}_{1}-\mathrm{M}_{4}$ are identical, and so are $\mathrm{M}_{5}-\mathrm{M}_{8}$.

