American University of Beirut
 Faculty of Engineering and Architecture
 Department of Electrical and Computer Engineering

EECE 311 - Electronics
Instructors: A. Kayssi and Z. Othman

Final Exam

June 14, 2003
Closed Book
No Programmable Calculators
Time: 180 minutes

NAME:

ID NUMBER:

Return the computer card attached to the question sheet.
Provide your answers on the computer card:
Only the computer card will be considered in grading.
Use a pencil for marking your answers and ID number on the computer card. When using an eraser, make sure you erased well.

- On this sheet, write with a pen your name followed by your ID number.

Sign the honor pledge.
All questions are equally graded (5 points per question)

PENALTY is FOUR to ONE

Penalty is calculated as follows: One to three wrong answers result in no penalty; four to seven wrong answers result in canceling one correct answer; eight to eleven wrong answers result in canceling two correct answers; and so on.

Questions 1 to 30 are equally graded.

1. Refer to Figure 2. What should the value of R be in order to have class $A B$ operation? Assume $\mathrm{V}_{\mathrm{BE}(\text { (on })}=0.6 \mathrm{~V}$ and neglect base current. Note that the bias circuit of Q_{1} has negligible effect and is not shown.
a) 12 K
b) 60 K
c) 0.6 K
d) 6 K
e) none of the above
2. Refer to Figure 2. Neglect the base current of the output transistors and assume $\beta=50$ for Q_{1}. Find the value of C that would give a lower 3-dB frequency of 100 Hz . Assume $V_{T}=25 \mathrm{mV}$. Note that the bias circuit of Q_{1} has negligible effect and is not shown.
a) 97.9 nF
b) 17.4 nF
c) 8.43 nF
d) 0.723 nF
e) none of the above
3. Refer to Figure 2. The average DC current drawn from both power supplies is 15 mA . What is the efficiency of the amplifier if the peak-to-peak output voltage is 8 V ?
a) 29.4%
b) 17.8%
c) 13.2%
d) 56.3%
e) none of the above
4. Which output stage has the smallest quiescent current?
a) Class A
b) Class B
c) Class AB
d) Class A and Class AB
5. For the modified Wien bridge oscillator shown in Figure 1, find the frequency of oscillation when $R=R_{1}=100 \mathrm{~K}$ and $\mathrm{C}=1 \mathrm{nF}$.
a) 3.18 KHz
b) 62.8 KHz
c) 10 KHz
d) 1.59 KHz
e) none of the above
6. A BJT biased at $I_{C}=1 \mathrm{~mA}$ has $\mathrm{f}_{\mathrm{T}}=300 \mathrm{MHz}$. Find C_{π} assuming that when $\mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA}, \mathrm{C}_{\pi}=10 \mathrm{C}_{\mu}$.
a) 22.6 pF
b) 13.3 pF
c) 19.3 pF
d) 10.5 pF
e) none of the above
7. For the two-stage amplifier shown in Figure 3, assume that for the $\mathrm{BJTs}, \mathrm{V}_{\mathrm{BE}}=0.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{T}}=$ 26 mV , and $\beta=100$. Find the DC collector currents for Q_{1} and Q_{2}. Neglect base current.
a) $\mathrm{I}_{\mathrm{C} 1}=0.118 \mathrm{~mA}, \mathrm{I}_{\mathrm{C} 2}=0.55 \mathrm{~mA}$
b) $\mathrm{I}_{\mathrm{C} 1}=0.253 \mathrm{~mA}, \mathrm{I}_{\mathrm{C} 2}=0.65 \mathrm{~mA}$
c) $\mathrm{I}_{\mathrm{C} 1}=0.174 \mathrm{~mA}, \mathrm{I}_{\mathrm{C} 2}=0.82 \mathrm{~mA}$
d) $\mathrm{I}_{\mathrm{C} 1}=0.266 \mathrm{~mA}, \mathrm{I}_{\mathrm{C} 2}=0.97 \mathrm{~mA}$
e) none of the above
8. For the circuit of Problem 7, find the input resistance of stage $2, \mathrm{R}_{\mathrm{i} 2}$ (at midband)
a) 22 K
b) 13.9 K
c) 16 K
d) 105.7 K
e) none of the above
9. For the circuit of Problem 7, find the AC midband gain of the first stage $\left(\mathrm{V}_{\mathrm{x}} / \mathrm{V}_{\mathrm{s}}\right)$ taking into account the loading effect of the input resistance of stage 2 on stage 1.
a) -12.6
b) -3.02
c) -18.2
d) -8.08
e) none of the above
10. For the circuit of Problem 7, find the overall gain of the amplifier at midband $\mathrm{V}_{\mathrm{d}} / \mathrm{V}_{\mathrm{s}}$.
a) 30.6
b) 21.5
c) 11.4
d) 6.8
e) none of the above
11. For the circuit of Problem 7, find the lower 3 dB frequency. Neglect the effect of $\mathrm{C}_{\mathrm{E} 1}$ and $\mathrm{C}_{\mathrm{E} 2}$ and assume that the low frequency response is due to $\mathrm{C}_{\mathrm{B} 1}$ and $\mathrm{C}_{\mathrm{B} 2}$ only. Use the method of short-circuit time contants. Assume the presence of a dominant pole.
a) 4.65 Hz
b) 39.6 Hz
c) 0.948 Hz
d) 19.4 Hz
e) none of the above
12. For the circuit of Problem 7, find the upper 3 dB frequency. Assume that the high frequency response of the circuit is determined by the input circuit of stage 1 only. Use Miller's theorem.
a) 98 KHz
b) 47 KHz
c) 69 KHz
d) 191 KHz
e) none of the above
13. For the amplifier circuit shown in Figure 4, find the voltage V_{S} when $V_{1}=V_{2}=0$. Assume $\mathrm{V}_{\mathrm{D}}=0.7 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{BE}}=0.7 \mathrm{~V}$. The BJTs are identical and have negligible base current. The FETs are identical with $\mathrm{k}_{\mathrm{n}} \mathrm{W} / \mathrm{L}=2.5 \mathrm{~mA} / \mathrm{V}^{2}$ and $\mathrm{V}_{\mathrm{t}}=-2 \mathrm{~V}$.
a) -0.7 V
b) 1.368 V
c) 2.437 V
d) -4.672 V
e) none of the above
14. For the circuit of Problem 13, find $V_{\text {out }}$ when $V_{1}=V_{2}=0$.
a) 5 V
b) 3 V
c) 1 V
d) 0 V
e) none of the above
15. Find the gain $\mathrm{Vo} / \mathrm{Vs}$ in the circuit shown in Figure 5. The BJTs have $\beta=260, \mathrm{~V}_{\mathrm{A}}=90 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{BE}}=0.7 \mathrm{~V}$. Assume $\mathrm{V}_{\mathrm{T}}=26 \mathrm{mV}$ and neglect the Early Effect in the DC analysis.
a) -284
b) -498
c) -331
d) -102
e) none of the above
16. For the amplifier shown in Figure 6, find the midband gain V_{d} / V_{s}. For the FET, $g_{m}=10$ mA / V, and $\mathrm{C}_{\mathrm{gs}}=\mathrm{C}_{\mathrm{gd}}=1 \mathrm{pF}$. For the BJT, $\beta=100, \mathrm{~g}_{\mathrm{m}}=100 \mathrm{~mA} / \mathrm{V}, \mathrm{C}_{\pi}=10 \mathrm{pF}$ and $\mathrm{C}_{\mu}=1 \mathrm{pF}$.
a) -99
b) -110
C) -11
d) -76.3
e) none of the above
17. For the circuit of Problem 16, find the upper 3-dB frequency using Miller's theorem and the open circuit time constants method. Assume the presence of a dominant pole.
a) 26 MHz
b) 3.8 MHz
c) 5.1 MHz
d) 56 MHz
e) none of the above
18. Find the value of R that gives a current $\mathrm{I}_{\mathrm{C} 2}=0.01 \mathrm{~mA}$ in the circuit of Figure 7. The transistors are matched. Assume $\mathrm{I}_{\mathrm{C} 1}=0.1 \mathrm{~mA}$ and $\mathrm{V}_{\mathrm{T}}=26 \mathrm{mV}$. Neglect base current.
a) 29.3 K
b) 13.8 K
c) 5.99 K
d) 10 K
e) none of the above
19. Find the transfer function $A(s)$ whose Bode plot is shown in Figure 8.
a) $100 \mathrm{~s} /\left((\mathrm{s}+100)\left(\mathrm{s}+10^{6}\right)\left(\mathrm{s}+10^{8}\right)\right)$
b) $100 \mathrm{~s}(\mathrm{~s}+100) /\left(\left(\mathrm{s}+10^{6}\right)\left(\mathrm{s}+10^{8}\right)\right)$
c) $10^{16} s /\left((s+100)\left(s+10^{6}\right)\left(s+10^{8}\right)\right)$
d) $10^{16} s(s+100) /\left(\left(s+10^{6}\right)\left(s+10^{8}\right)\right)$
e) none of the above
20. For the amplifier of Problem 19, what is the approximate value of the gain at $10^{7} \mathrm{rad} / \mathrm{sec}$?
a) 10 dB
b) 0 dB
c) 40 dB
d) 30 dB
e) none of the above
21. Two amplifiers with upper $3-\mathrm{dB}$ frequencies of 10 MHz and 15 MHz , respectively, are cascaded together. What is the upper $3-\mathrm{dB}$ frequency of the resulting system?
a) 10 MHz
b) 15 MHz
c) 25 MHz
d) 12.5 MHz
e) none of the above
22. Refer to Figure 10. The MOSFET has $g_{m}=3 \mathrm{~mA} / \mathrm{V}, \mathrm{C}_{\mathrm{gs}}=4 \mathrm{pF}$, and $\mathrm{C}_{\mathrm{gd}}=10 \mathrm{pF}$. Find the lower 3-dB frequency using the method of short-circuit time constants.
a) 20.6 Hz
b) 9.02 Hz
c) 14.7 Hz
d) 6.82 Hz
e) none of the above
23. The gain of an amplifier at 10 MHz should be 90% its midband gain. What should be the upper 3 dB frequency of this amplifier? Assume the presence of a high-frequency dominant pole.
a) 10 MHz
b) 15.8 MHz
c) 17.3 MHz
d) 20.6 MHz
e) none of the above
24. When the inputs to a differential amplifier are $v_{1}=\sin (\omega t) m V$ and $v_{2}=3 \sin (\omega t) m V$, the output is $-204 \sin (\omega t) \mathrm{mV}$. When v_{1} increases to $5 \sin (\omega t) \mathrm{mV}$, while v_{2} is kept the same, the output becomes $+192 \sin (\omega t) \mathrm{mV}$. What is the common-mode rejection ratio of this differential amplifier?
a) 81.45 dB
b) 33.98 dB
c) 48.33 dB
d) 78.92 dB
e) none of the above
25. A class A amplifier should provide a 4 V peak-to-peak signal to an 8Ω load. What is the average current drawn from a 12 V power supply at maximum efficiency?
a) 133.33 mA
b) 100 mA
c) 500 mA
d) 83.33 mA
e) none of the above
26. For the circuit shown in Figure 9, find the input resistance $R_{i 1}$. Assume that $\beta=100$ and $r_{\pi 1}$ $=1 \mathrm{~K} \Omega, \mathrm{r}_{\pi 2}=0.5 \mathrm{~K} \Omega$, and $\mathrm{r}_{\pi 3}=0.5 \mathrm{~K} \Omega$.
a) $101 \mathrm{~K} \Omega$
b) $10 \mathrm{~K} \Omega$
c) $11.1 \mathrm{~K} \Omega$
d) $1 \mathrm{~K} \Omega$
e) none of the above
27. For the circuit shown in Figure 9, find the output resistance R_{0}. Assume that $\beta=100$ and $r_{\pi 1}$ $=1 \mathrm{~K} \Omega, \mathrm{r}_{\pi 2}=0.5 \mathrm{~K} \Omega$, and $\mathrm{r}_{\pi 3}=0.5 \mathrm{~K} \Omega$.
a) 24.6Ω
b) 19.7Ω
c) 38.2Ω
d) 31.7Ω
e) none of the above
28. For the circuit shown in Figure 9, find the voltage gain v_{01} / v_{s}. Assume that $\beta=100$ and $r_{\pi 1}=$ $1 \mathrm{~K} \Omega, \mathrm{r}_{\pi 2}=0.5 \mathrm{~K} \Omega$, and $\mathrm{r}_{n 3}=0.5 \mathrm{~K} \Omega$.
a) -3.03
b) -4.61
c) -2.54
d) -6.33
e) none of the above
29. For the circuit shown in Figure 9, find the voltage gain $v_{0} / v_{b 3}$ where $v_{b 3}$ is the voltage at the base of transistor Q_{3}. Assume that $\beta=100$ and $r_{\pi 1}=1 \mathrm{~K} \Omega, r_{r 2}=0.5 \mathrm{~K} \Omega$, and $r_{\pi 3}=0.5 \mathrm{~K} \Omega$.
a) 0.895
b) 0.999
c) 0.911
d) 0.944
e) none of the above
30. For the circuit shown in Figure 9, find the upper 3 dB frequency. Assume that $\beta=100, \mathrm{C}_{\pi}=$ $10 \mathrm{pF}, \mathrm{C}_{\mu}=1 \mathrm{pF}$ for the three BJTs, and that $\mathrm{r}_{\pi 1}=1 \mathrm{~K} \Omega, \mathrm{r}_{\pi 2}=0.5 \mathrm{~K} \Omega$, and $\mathrm{r}_{\pi 3}=0.5 \mathrm{~K} \Omega$. Use the method of open-circuit time constants.
a) 5.2 MHz
b) 12.8 MHz
c) 7.3 MHz
d) 2.6 MHz
e) none of the above
