American University of Beirut

Faculty of Engineering and Architecture Department of Electrical and Computer Engineering

> EECE 311 - Electronics Instructors: A. Kayssi and Z. Othman

> > Final Exam June 14, 2003

Closed Book No Programmable Calculators

Time: 180 minutes

NAME:			
ID NUMBER:			

- ▶ Return the computer card attached to the question sheet.
- Provide your answers on the computer card:
 Only the computer card will be considered in grading.
 Use a pencil for marking your answers and ID number on the computer card.
 When using an eraser, make sure you erased well.
- ➤ On this sheet, write with a pen your name followed by your ID number. Sign the honor pledge.
- ► All questions are equally graded (5 points per question)

PENALTY is FOUR to ONE

Penalty is calculated as follows: One to three wrong answers result in no penalty; four to seven wrong answers result in canceling one correct answer; eight to eleven wrong answers result in canceling two correct answers; and so on.

Questions 1 to 30 are equally graded.

1. Refer to Figure 2 . What should the value of R be in order to have class AB operation? Assume $V_{\text{BE}(on)} = 0.6V$ and neglect base current. Note that the bias circuit of Q_1 has negligible effect and is not shown.					
a) 12K	b) 60K	c) 0.6K	d) 6K	e) none of the above	
2. Refer to Figure 2 . Neglect the base current of the output transistors and assume β = 50 for Q ₁ . Find the value of C that would give a lower 3-dB frequency of 100 Hz. Assume V _T = 25 mV. Note that the bias circuit of Q ₁ has negligible effect and is not shown.					
a) 97.9 nF	b) 17.4 nF	c) 8.43 nF	d) 0.723 nF	e) none of the above	
3. Refer to Figure 2 . The average DC current drawn from both power supplies is 15 mA. What is the efficiency of the amplifier if the peak-to-peak output voltage is 8V?					
a) 29.4%	b) 17.8%	c) 13.2%	d) 56.3%	e) none of the above	
4. Which output	stage has the si	mallest quiescen	t current?		
a) Class A b) Class B c) Class AB d) Class A and	Class AB				
	100K and $C = 1$ r		n Figure 1 , find d) 1.59 KHz	the frequency of oscillation e) none of the above	
,	ŕ	·	,	that when $I_C=1$ mA, $C_{\pi}=10$ C _{μ} .	
a) 22.6 pF	b) 13.3pF	c) 19.3pF	d) 10.5pF	e) none of the above	
7. For the two-stage amplifier shown in Figure 3 , assume that for the BJTs, $V_{BE} = 0.7 \text{ V}$, $V_{T} = 26 \text{ mV}$, and $\beta = 100$. Find the DC collector currents for Q_{1} and Q_{2} . Neglect base current. a) $I_{C1} = 0.118 \text{ mA}$, $I_{C2} = 0.55 \text{ mA}$ b) $I_{C1} = 0.253 \text{ mA}$, $I_{C2} = 0.65 \text{ mA}$ c) $I_{C1} = 0.174 \text{ mA}$, $I_{C2} = 0.82 \text{ mA}$ d) $I_{C1} = 0.266 \text{ mA}$, $I_{C2} = 0.97 \text{ mA}$ e) none of the above					
8. For the circui a) 22K	t of Problem 7, f b) 13.9K	ind the input resi c) 16K	stance of stage 2 d) 105.7K	2, R _{i2} (at midband) e) none of the above	
9 . For the circuit of Problem 7, find the AC midband gain of the first stage (V_{\star}/V_s) taking into account the loading effect of the input resistance of stage 2 on stage 1. a) -12.6 b) -3.02 c) -18.2 d) -8.08 e) none of the above					
10 . For the circual 30.6	uit of Problem 7, b) 21.5	find the overall g c) 11.4	ain of the amplificed) 6.8	er at midband V _o /V _s . e) none of the above	
11. For the circuit of Problem 7, find the lower 3 dB frequency. Neglect the effect of C_{E1} and C_{E2} and assume that the low frequency response is due to C_{B1} and C_{B2} only. Use the method of short-circuit time contants. Assume the presence of a dominant pole. a) 4.65 Hz b) 39.6 Hz c) 0.948 Hz d) 19.4 Hz e) none of the above					

				ssume that the high frequency 1 only. Use Miller's theorem. e) none of the above	
13 . For the amplifier circuit shown in Figure 4 , find the voltage V_S when $V_1 = V_2 = 0$. Assume $V_D = 0.7V$ and $V_{BE} = 0.7V$. The BJTs are identical and have negligible base current. The FETs are identical with $K_D' = 0.7V$ and $V_T = 0.7V$ and $V_T = 0.7V$.					
a) -0.7V	b) 1.368V	c) 2.437 V	d) -4.672V	e) none of the above	
14 . For the circ a) 5 V	uit of Problem 13 b) 3 V	, find V_{out} when V c) 1 V	$V_1 = V_2 = 0.$ d) 0 V	e) none of the above	
	in Vo/Vs in the cisume $V_T = 26 \text{ m}$ b) -498			Ts have $\beta = 260$, $V_A = 90V$ and he DC analysis. e) none of the above	
				V_s . For the FET, $g_m = 10$ V , $C_\pi = 10$ pF and $C_\mu = 1$ pF. e) none of the above	
	uit of Problem 16 e constants meth b) 3.8 MHz			sing Miller's theorem and the ominant pole. e) none of the above	
				rcuit of Figure 7 . The Neglect base current. e) none of the above	
19 . Find the transfer function A(s) whose Bode plot is shown in Figure 8 . a) $100s / ((s+100)(s+10^6)(s+10^8))$ b) $100s(s+100) / ((s+10^6)(s+10^8))$ c) $10^{16}s / ((s+100)(s+10^6)(s+10^8))$ d) $10^{16}s(s+100) / ((s+10^6)(s+10^8))$ e) none of the above					
20 . For the amp a) 10 dB	blifier of Problem b) 0 dB	19, what is the a c) 40 dB	pproximate value d) 30 dB	e of the gain at 10 ⁷ rad/sec? e) none of the above	
•	ers with upper 3-o her. What is the b) 15 MHz	•		MHz, respectively, are ting system? e) none of the above	
22 . Refer to Figure 10 . The MOSFET has $g_m = 3$ mA/V, $C_{gs} = 4$ pF, and $C_{gd} = 10$ pF. Find the lower 3-dB frequency using the method of short-circuit time constants. a) 20.6 Hz b) 9.02 Hz c) 14.7 Hz d) 6.82 Hz e) none of the above					
-	•			d gain. What should be the high-frequency dominant pole. e) none of the above	
24 . When the inputs to a differential amplifier are $v_1 = \sin(\omega t)$ mV and $v_2 = 3\sin(\omega t)$ mV, the output is -204 $\sin(\omega t)$ mV. When v_1 increases to $5\sin(\omega t)$ mV, while v_2 is kept the same, the output becomes +192 $\sin(\omega t)$ mV. What is the common-mode rejection ratio of this differential amplifier?					
a) 81.45 dB	b) 33.98 dB	c) 48.33 dB	d) 78.92 dB	e) none of the above	
25 . A class A amplifier should provide a 4V peak-to-peak signal to an 8 Ω load. What is the average current drawn from a 12V power supply at maximum efficiency?					

a) 133.33 mA	b) 100 mA	c) 500 mA	d) 83.33 mA	e) none of the above		
26. For the circuit shown in Figure 9 , find the input resistance R_{i1} . Assume that $\beta = 100$ and r_{rd}						
= 1 K Ω , r_{r2} = 0.5 K Ω , and r_{r3} = 0.5 K Ω .						
a) 101 K Ω	b) 10 K Ω	c) 11.1 KΩ	d) 1 K Ω	e) none of the above		

27. For the circuit shown in **Figure 9**, find the output resistance R_o. Assume that β = 100 and r_{r1} = 1 K Ω , r_{r2} = 0.5 K Ω , and r_{r3} = 0.5 K Ω . a) 24.6 Ω b) 19.7 Ω c) 38.2 Ω d) 31.7 Ω e) none of the above

28. For the circuit shown in **Figure 9**, find the voltage gain v_{o1}/v_s . Assume that $\beta=100$ and $r_{\pi 1}=1$ K Ω , $r_{\pi 2}=0.5$ K Ω , and $r_{\pi 3}=0.5$ K Ω . a) -3.03 b) -4.61 c) -2.54 d) -6.33 e) none of the above

29. For the circuit shown in **Figure 9**, find the voltage gain v_o/v_{b3} where v_{b3} is the voltage at the base of transistor Q_3 . Assume that $\beta = 100$ and $r_{\pi 1} = 1$ K Ω , $r_{\pi 2} = 0.5$ K Ω , and $r_{\pi 3} = 0.5$ K Ω . a) 0.895 b) 0.999 c) 0.911 d) 0.944 e) none of the above

30. For the circuit shown in **Figure 9**, find the upper 3 dB frequency. Assume that β = 100, C_{π} = 10 pF, C_{μ} = 1 pF for the three BJTs, and that $r_{\pi l}$ = 1 K Ω , $r_{\pi 2}$ = 0.5 K Ω , and $r_{\pi 3}$ = 0.5 K Ω . Use the method of open-circuit time constants.

method of open-circuit time constants.
a) 5.2 MHz b) 12.8 MHz c) 7.3 MHz d) 2.6 MHz e) none of the above